Skip to main content

Syntheses and Characterization of Titanium Encapsulated Alumino-Silicate Microspheres (TiAS300/500): Promising Materials for the Removal of Azo Dyes from Groundwater

  • Conference paper
  • First Online:
Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1 (ICEG 2018)

Part of the book series: Environmental Science and Engineering ((ENVENG))

Included in the following conference series:

  • 3075 Accesses

Abstract

The present research is concerned with the abatement of dye contamination in groundwater due to certain dye molecules such as Eriochrome black – T (C20H12N3O7SNa, EBT), Calcon carboxylic acid (C21H14N2O7S, CCD) and Calcon (C20H13N2NaO5S, CD) using Titanium encapsulated aluminosilicate microspheres (TiAS300 and TiAS500). Removal efficiency of dye as a function of synthetic dye solutions (EBT, CCD and CD) at various concentrations separately and in the form of 1:1, 2:3 and 3:2 mixtures was investigated at an optimized pH 3 for an equilibrium time of just 20 min. The dye uptake of Ti encapsulated aluminosilicate (AS) microspheres was more efficient than that of virgin AS microspheres by 18 times. The performance of TiAS300 and TiAS500 in the presence of other interfering anions such as nitrate, fluoride and sulfate was quite promising. It was apparent that the use of thermally regenerated adsorbent had to be more in quantity depending upon the cycle number for the complete removal of EBTD as compared with the freshly used TiAS quantities. The characterization studies such as SEM and XRD for the virgin, EBTD loaded and thermally regenerated adsorbents were done. The various stretching frequencies of groups present in the adsorbent materials were confirmed by FTIR. The morphological change from mullite to sillimanite during the loading process and distortion of spherical morphology in Titanium encapsulated ASMS due to hydrothermal process at 300 °C and 500 °C were well ascertained by XRD and SEM studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27

    Google Scholar 

  2. Ejhieha AN, Khorsandia M (2010) Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. J Hazard Mater 176:629–637

    Article  Google Scholar 

  3. Iqbal MJ, Ashiq MN (2007) Adsorption of dyes from aqueous solutions on activated charcoal. J Hazard Mater B139:57–66

    Article  Google Scholar 

  4. Abdelkader E, Nadjia L, Rose-Noelle V (2016) Adsorption of Congo red azo dye on nanosized SnO2derived from sol-gel method. Int J Ind Chem 7(1):53–70

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Japanese Society for the Promotion of Science for the financial assistance through the Grants – in – Aid for Scientific Research (ID No. 16544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataraman Sivasankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sivasankar, V., Omine, K. (2019). Syntheses and Characterization of Titanium Encapsulated Alumino-Silicate Microspheres (TiAS300/500): Promising Materials for the Removal of Azo Dyes from Groundwater. In: Zhan, L., Chen, Y., Bouazza, A. (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. ICEG 2018. Environmental Science and Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2221-1_79

Download citation

Publish with us

Policies and ethics