Skip to main content

Performance Issues of Barrier Systems for Landfills

  • Conference paper
  • First Online:
Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1 (ICEG 2018)

Part of the book series: Environmental Science and Engineering ((ENVENG))

Included in the following conference series:

  • 3203 Accesses

Abstract

The objective of the paper is to give an update in key topics related to performance issues of barrier systems for landfills. The objective of using barrier systems is to minimize the impact of contaminants on the surrounding environment. To achieve this goal puncture protection of the geomembrane must be ensured. An update is first given is this matter. The question of the stability on slope of geosynthetic barrier systems is then discussed and an insight is given in modeling and laboratory measurement of parameters required to perform reliable modeling, especially as regards the case of piggy-back landfills. Finally, the question of transfers though bottom barrier systems is addressed, giving an update especially in the analytical solutions developed in the past 10 years in China in this matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuel-Naga HM, Bouazza A (2014) Numerical experiment-artificial intelligence approach to develop empirical equations for predicting leakage rates through GM/GCL composite liners. Geotext Geomem 42:236–245

    Article  Google Scholar 

  • AFNOR (2016) EN ISO 13719. Geosynthetics – determination of the long term protection efficiency of geosynthetics in contact with geosynthetic barriers

    Google Scholar 

  • AFNOR (2015) EN ISO 10318. Geosynthetics - terms and definitions

    Google Scholar 

  • AFNOR (2005a) EN ISO 12957-1, geosynthetic - determination of friction characteristics, Part 1: direct shear test

    Google Scholar 

  • AFNOR (2005b). EN ISO 12957-2, geosynthetic - determination of friction characteristics, Part 2: inclined plane test

    Google Scholar 

  • Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5:7–17

    Article  Google Scholar 

  • Bergado DT, Ramana GV, Sia HI, Varun R (2006) Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand. Geotext Geomem 24(6):371–393

    Article  Google Scholar 

  • Brachman RWI, Sabir A (2013) Long-Term assessment of a layered-geotextile protection layer for geomembranes. J Geotech Geoenviron Eng 139(5):752–764

    Article  Google Scholar 

  • Bouazza A, Zornberg JG, Adam D (2002) Geosynthetics in waste containment facilities: recent advances. In: Proceedings of the 7th international conference on geosynthetics, Nice, pp 445–507. ISBN 90 5809 525 8

    Google Scholar 

  • Briançon L, Girard H, Gourc JP (2011) A new procedure for measuring geosynthetic friction with an inclined plane. Geotext Geomem 29:472–482

    Article  Google Scholar 

  • Briançon L, Girard H, Poulain D (2002) Slope stability of lining systems: experimental modeling of friction at geosynthetic interfaces. Geotext Geomem 20:147–172

    Article  Google Scholar 

  • Carbone L, Gourc JP, Carrubba P, Pavanello P, Moraci N (2015) Dry friction behaviour of a geosynthetic interface using inclined plane and shaking table tests. Geotext Geomem 43:293–306

    Article  Google Scholar 

  • Chen YM, Li JC, Yang CB, Zhu B, Zhan LT (2017) Centrifuge modeling of municipal solid waste landfill failures induced by rising water levels. Can Geotech J 54:1739–1751

    Article  Google Scholar 

  • Chen Y, Lin W, Zhan TLT (2010) Investigation of mechanisms of bentonite extrusion from GCL and related effects on the shear strength of GCL/GM interfaces. Geotext Geomem 28(1):63–71

    Article  Google Scholar 

  • Chen YM, Wang YZ, Xie HJ (2015) Breakthrough time-based design of landfill 1.2 section heading composite liners. Geotext Geomembr 43:196–206

    Article  Google Scholar 

  • Chen YM, Deng G, Zhu B, Chen RP (2008) Seismic stability and permanent displacement of landfill along liners. Sci China Ser E Technol Sci 51(4):407–423

    Article  Google Scholar 

  • Dixon JH, von Maubeuge K (1992) Geosynthetic protection layers for the lining systems of landfills. Ground Eng: 28–30

    Google Scholar 

  • El-Zein A, McCarroll I, Touze-Foltz N (2012) Three-dimensional finite-element analyses of seepage and contaminant transport through composite geosynthetic clay liners with multiple defects. Geotext Geomem 33:34–42

    Article  Google Scholar 

  • Fellenius W (1927) Erdstatische Berechnungen mit Reibung und Kohäsion (Adhäsion) und unter Annahme kreiszylindrischer Gleitflächen. Ernst & Sohn, Berlin

    MATH  Google Scholar 

  • Ferreira FB, Vieira CS, Lopes ML (2016) Soil-geosynthetic interface strength properties from inclined plane and direct shear tests - a comparative analysis. In: GA 2016 - 6th Asian regional conference on geosynthetics: geosynthetics for infrastructure development

    Google Scholar 

  • Ferreira FB, Vieira CS, Lopes ML (2015) Direct shear behaviour of residual soil–geosynthetic interfaces – influence of soil moisture content, soil density and geosynthetic type. Geosyn Int 22:257–272

    Article  Google Scholar 

  • Fleming IR, Rowe RK (2004) Laboratory studies of clogging of landfill leachate collection & drainage systems. Can Geotech J 41(1):134–153

    Article  Google Scholar 

  • Foose GJ (2010) A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Man 30:1577–1586

    Article  Google Scholar 

  • Gallagher EM, Darbyshire W, Warwick RG (1999) Performance testing of landfill geoprotectors: background, critique, development and current UK practice. Geosyn Int 6(4):283–301

    Article  Google Scholar 

  • Gartung E (1994) Discussion of session E7: protection of geomembrane liners, permissible local strain in the geomembrane. In: Proceedings of the 5th international conference on geotextiles, geomembranes and related products, Singapore, vol 4, pp 1521–1523

    Google Scholar 

  • Giroud JP, Williams ND, Pelte T, Beech JF (1995) Stability of geosynthetic-soil layered systems on slopes. Geosyn Int 2(6):1115–1148

    Article  Google Scholar 

  • Giroud JP, Bonaparte R (1989) Leakage through liners constructed with geomembranes. 2. Composite liners. Geotext Geomem 8(2):71–111

    Article  Google Scholar 

  • Jones DRV (2015) Using geosynthetics for sustainable development. In: The 2nd international GSI-Asia geosynthetics conference (GSI-Asia 2015), Seoul, Korea, 4 p

    Google Scholar 

  • Jones RV, Dixon N (2011) European perspectives on sustainable development using Geosynthetics. In: Proceedings of the 24th annual GRI conference: optimizing sustainability using geosynthetics, Dallas, Texas, USA, pp 1–7

    Google Scholar 

  • Koerner RM, Wong WK, Koerner GR (2012) Index puncture resistance of geomembranes using various protection geosynthetics. Geotech Testing J 35(5):1–9

    Article  Google Scholar 

  • Koerner RM (2005) Designing with geosynthetics, 5th edn. Prentice Hall, Englewood Cliffs, p 816

    Google Scholar 

  • Koerner RM, Soong TY (2000) Leachate in landfills: the stability issues. Geotext Geomem 18:293–309

    Article  Google Scholar 

  • Koerner RM, Soong TY (1998) Analysis and design of veneer cover soils. Geosyn Int 12(1):28–49

    Article  Google Scholar 

  • Koerner RM, Wilson-Fahmy RF, Narejo D (1996) Puncture protection of geomembranes. Part III: examples. Geosyn Int 3(5):655–675

    Article  Google Scholar 

  • Koutsourais MM, Sprague CJ, Pucetas RC (1991) Interfacial friction study of cap and liner components for landfill design. Geotext Geomem 10:531–548

    Article  Google Scholar 

  • Martin JP, Koerner RM (1985) Geotechnical design considerations for geomembrane lined slopes: slope stability. Geotext Geomem 2:299–321

    Article  Google Scholar 

  • Narejo D, Koerner RM, Wilson-Fahmy RF (1996) Puncture protection of geomembranes. Part II: experimental. Geosyn Int 3(5):629–653

    Article  Google Scholar 

  • Palmeira EM, Lima NR Jr, Mello LGR (2002) Interaction between soils and geosynthetic layers in large-scale ramp tests. Geosyn Int 9:149–187

    Article  Google Scholar 

  • Pitanga HN, Gourc JP, Vilar OM (2009) Interface shear strength of geosynthetics: evaluation and analysis of inclined plane test. Geotext Geomem 27:435–446

    Article  Google Scholar 

  • Powrie W, Beaven RP, Richards DJ (2014) Landfill aftercare: meeting the challenge. In: 2014 Engineers Australia, pp 219–226

    Google Scholar 

  • Qian X, Koerner RM (2009) Stability analysis when using an engineered berm to increase landfill space. J Geotech Geoenv Eng 135:1082–1091

    Article  Google Scholar 

  • Reddy KR, Saichek RE (1998) Performance of protective cover systems for landfill geomembrane liners under long-term MSW loading. Geosyn Int 5(3):287–307

    Article  Google Scholar 

  • Reddy KR, Bandi SR, Rohr JJ, Finny M, Siebken J (1996) Field evaluation of protective covers for landfill geomembrane liners under construction loading. Geosyn Int 3(6):679–700

    Article  Google Scholar 

  • Reyes-Ramirez R, Gourc JP (2003) Use of the inclined plane test in measuring geosynthetic interface friction relationship. Geosyn Int 10:165–175

    Article  Google Scholar 

  • Rong F, Zhaogui G, Tugen F (2011) Analysis of stability and control in landfill sites expansion. In: Proceedings of the international conference on advances in engineering. Procedia engineering, vol 24, pp 667–671

    Google Scholar 

  • Rowe RK (2017) Protecting the environment with geosynthetics. The 53rd Karl Terzaghi Lecture, ppt presentation (complimentary copy), 100 p

    Google Scholar 

  • Rowe RK (2009) Long-term performance of leachate collection systems and geomembrane liners for MSW landfills. In: Proceedings of the geoafrica 2009, first African conference on Geosynthetics, Cape Town, South Africa, 23 p

    Google Scholar 

  • Rowe RK (1998) Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste. In: Keynote lecture, proceedings of the 6th international conference on geosynthetics, vol 1, Atlanta, USA, pp 27–103

    Google Scholar 

  • Rowe RK, Brachman RWI (2004) Assessment of equivalence of composite liners. Geosyn Int 11(4):273–286

    Article  Google Scholar 

  • Rowe RK, Quigley RM, Brachman RWI, Booker JR (2004). Barrier systems for waste disposal facilities. Taylor & Francis (E & FN Spon), London, 587 p, ISBN 0-419-22630-3

    Google Scholar 

  • Saathoff F, Sehrbrock H (1994) Indicators for selection of protective layers for geomembranes. In: Proceedings of the 5th international conference on geotextiles, geomembranes and related products, Singapore, pp 1019–1022

    Google Scholar 

  • Stoltz G, Hérault A (2014) Assessing interface friction angles of geosynthetics by comparing two loading methods. In: Proceedings of the 10th international conference on geosynthetics, Berlin, Germany

    Google Scholar 

  • Stoltz G, Auray G (2014) Comparison of various testing methods for soil-geogrid friction parameters estimation to stabilise a thin soil layer on slopes. In: Proceedings of the 10th international conference on geosynthetics, Berlin, Germany

    Google Scholar 

  • Stoltz G, Croissant, D, Touze-Foltz N (2013) Some geotextiles properties useful for HDPE geomembrane puncture protection. In: TC 215 symposium coupled phenomena in environmental geotechnics (CPEG), Torino, Italy, 6 p

    Google Scholar 

  • Tano BFG, Dias D, Stoltz G, Touze-Foltz N, Olivier F (2017a) Numerical modelling to identify key factors controlling interface behaviour of geosynthetic lining systems. Geosyn Int 24(2):167–183

    Article  Google Scholar 

  • Tano BFG, Stoltz G, Touze-Foltz N, Dias D, Olivier F (2017b) A numerical modelling technique for geosynthetics validated on a cavity model test. Geotext Geomem 45:339–349

    Article  Google Scholar 

  • Tano BFG, Dias D, Fowmes GJ, Olivier F, Stoltz G, Touze-Foltz N (2016) Numerical modeling of the nonlinear mechanical behaviour of multilayer geosynthetic system for piggy-back landfill expansion. Geotext Geomembr 44(6):782–798

    Article  Google Scholar 

  • Tano F, Olivier F, Touze-Foltz N, Dias D (2015) State-of-the-art of piggy-back landfills worldwide: comparison of containment barrier technical designs and performance analysis in terms of geosynthetics stability. In: Proceedings of geosynthetics 2015, 15–18 February, Portland, Oregon, USA, 11 p

    Google Scholar 

  • Thiel RS (1998) Design methodology for a gas pressure relief layer below a geomembrane landfill cover to improve slope stability. Geosyn Int 5(6):589–617

    Article  Google Scholar 

  • Tognon AR, Rowe RK, Moore ID (2000) Geomembrane strain observed in large-scale testing of protection layers. J Geotech Geoenv Eng 126(12):1194–1208

    Article  Google Scholar 

  • Touze-Foltz N, Bannour H, Barral C, Stoltz G (2016) A review of the performance of geosynthetics for environmental protection. Geot Geomem 44:656–672

    Article  Google Scholar 

  • Touze-Foltz, N, Lupo J, Barroso M (2008) Geoenvironmental applications of geosynthetics. In: Keynote lecture: proceedings of eurogeo 4, the 4th European conference on geosynthetics, Edinburgh, Scotland, UK, 98 p

    Google Scholar 

  • Touze-Foltz N, Barroso M (2006) Empirical equations for calculating the rate of liquid flow through GCL-geomembrane composite liners. Geosyn Int 13(2):73–82

    Article  Google Scholar 

  • Vieira CS, Lopes ML, Caldeira LM (2013) Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests. Geosyn Int 20:26–38

    Article  Google Scholar 

  • Wasti Y, Özdüzgün ZB (2001) Geomembrane–geotextile interface shear properties as determined by inclined board and direct shear box tests. Geotext Geomem 19:45–57

    Article  Google Scholar 

  • Wilson-Fahmy RF, Narejo D, Koerner RM (1996) Puncture protection of geomembranes Part I: theory. Geosyn Int 3(5):605–628

    Article  Google Scholar 

  • Xie HJ, Zhang C, Feng S, Wang Q, Yan H (2018) Analytical model for degradable organic contaminant transport through a GMB/GCL/AL System. J Environ Eng 144(3):04018006

    Article  Google Scholar 

  • Xie HJ, Jiang YS, Zhang CH, Feng SJ (2015a) An Analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL and a soil liner. Environ Sci Pollut Res 22:2824–2836

    Article  Google Scholar 

  • Xie HJ, Zhang CH, Sedighi M, Thomas HR, Chen YM (2015b) An analytical model for diffusion of chemicals under thermal effects in semi-infinite porous media. Comput Geotech 69:329–337

    Article  Google Scholar 

  • Xie HJ, Jiang YS, Zhang CH, Feng S, Qiu Z (2015c) Steady-state analytical models for performance assessment of landfill composite liners. Environ Sci Pollut Res 22:12198–12214

    Article  Google Scholar 

  • Xie HJ, Lou ZH, Chen YM, Jin AM, Zhan LT, Tang XW (2013) An analytical solution to organic contaminant diffusion through composite liners considering the effect of degradation. Geotext Geomembr 36:10–18

    Article  Google Scholar 

  • Xie HJ, Chen YM, Lou ZH (2010) An analytical solution to contaminant transport through composite liners with geomembrane defects. Sci China Technol Sci 40(5):486–495

    MATH  Google Scholar 

  • Xie H, Chen Y, Ke H, Tang X, Chen R (2009) Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants. J Env Sci 21:552–560

    Article  Google Scholar 

  • Xie HJ, Ke H, Chen YM, Tang XW (2006) Analysis of one dimensional organic contaminants diffusion through composite liners under time-dependant concentration conditions. Acta Sci Circumstantiae 26(6):930–936

    Google Scholar 

  • Yesiller N, Manheim D, Hanson J, Chrysovergis T (2016) Temperature-dependent variation in surface characteristics of a textured geomembrane due to interface shear testing against a GCL. In: 3rd Pan-American Conference on Geosynthetics, Geo-Americas 2016, Miami Beach, USA

    Google Scholar 

  • Zanzinger H (1999) Efficiency of geosynthetic protection layers for geomembrane liners: performance in a large-scale model test. Geosyn Int 6(4):303–317

    Article  Google Scholar 

  • Zhan LT, Chen C, Bouazza A, Chen YM (2018) Evaluation leakages through GMB/GCL composite liners considering random hole distribution in wrinkle networks. Geotext Geomem 46:131–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Touze-Foltz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Touze-Foltz, N., Xie, H., Stoltz, G. (2019). Performance Issues of Barrier Systems for Landfills. In: Zhan, L., Chen, Y., Bouazza, A. (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. ICEG 2018. Environmental Science and Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2221-1_4

Download citation

Publish with us

Policies and ethics