Skip to main content

Cable-Driven Parallel Robot Modelling for Rehabilitation Use

  • Chapter
  • First Online:
  • 751 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 175))

Abstract

The aim of this chapter is to presents a Kinematic analysis of a Cable-Driven Robot for rehabilitation use of human lower limb, by taking into account the constraints required by the entrainment system and the mobile platform (human leg). The proposed approach is focused on optimizing the manipulability and the human performance of the human leg, as being a physiologically constrained three-link arm. The obtained forward kinematic model leads to define the feasible workspace of the human leg in the considered configuration. Using an effective optimization-based human performance measure that incorporates a new objective function of musculoskeletal discomfort, and the mapping relation between articular joints actuator, length cables and articular joint mobile platform, the optimal inverse kinematic (IK) model is obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Malek, K., Yang, J., Yu, W., & Duncan, J. (2004). Human performance measures: Mathematics. Iowa: University of Iowa.

    Google Scholar 

  • Bryson, J. T., & Agrawal, S. K. (2013). Methodology to identify and analyze optimal cable configurations in the design of cable-driven serial manipulators. In International Design Engineering Technical Conference and Computers and Information in Engineering Conference, 37th ASME Conference Mechanisms and Robotics IDETC/CIE.

    Google Scholar 

  • Chaffin, D. B., Andersson, G. B. J., & Martin, B. J. (1992). Occupational biomechanics. New York: Wiley.

    Google Scholar 

  • Chen, Y. (2000). Changes in lifting dynamics after localized arm fatigue. International Journal of Industrial Ergonomics, 25(6), 611–619.

    Article  MathSciNet  Google Scholar 

  • Dombre, E., & Khalil, W. (2010). Modeling, performance analysis and control of robot manipulators. London: Wiley.

    MATH  Google Scholar 

  • El-Ghazaly, G., Gouttefarde, M., & Creuze, V. (2014). Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator: Cogiro. In Proceedings of the Second International Conference on Cable-Driven Parallel Robots. Springer.

    Google Scholar 

  • Eschenauer, H. A., & Thierauf, G. (1989). Discretization methods and structural optimization, procedures and applications. In Proceedings of a GAMM-Seminar October 5–7, 1988, Siegen, FRG (Lecture notes in engineering). Springer.

    Google Scholar 

  • Faqihi, H., Saad, M., Ben Jelloun, K., Benbrahim, M., & Kabbaj, M. N. (2016). Tracking trajectory of a cable-driven robot for lower limb rehabilitation. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 10(8), 1036–1041.

    Google Scholar 

  • Gill, P. E., Murray, W., & Saunders, M. A. (2002). Snopt: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1), 99–131.

    Article  MathSciNet  Google Scholar 

  • Glowinski, S., & Krzyzynski, T. (2016). An inverse kinematic algorithm for human leg. Journal of Theoretical and Applied Mechanics, 54(1), 53–61.

    Article  Google Scholar 

  • Gouttefarde, M., & Gosselin, C. M. (2012). Analysis of the wrench-closureworkspace of planar parallel cable-drivenmechanisms. IEEE Transaction on Robotics, 22(3), 434–445.

    Article  Google Scholar 

  • Hernandez-Santos, C., Soto, R., & Rodriguez, E. (2011). Design and dynamic modeling of humanoid biped robot e-robot. IEEE Conference on Electronics, Robotics and Automotive Mechanics CERMA, Cuernavaca, Mexico.

    Google Scholar 

  • Marler, R. T., Arora, J. S., Yang, J., Kim, H. J., & Abdel-Malek, K. (2009). Use of multi-objective optimization for digital human posture prediction. Engineering Optimization, 41(10), 925–943.

    Article  Google Scholar 

  • Mi, Z., Yang, J., & Abdel-Malek, K. (2009). Optimization-based posture prediction for human upper body. Robotica, 27(4), 607–622.

    Article  Google Scholar 

  • Pennycott, A., Wyss, D., Vallery, H., Klamroth-Marganska, V., & Riener, R. (2012). Towards more effective robotic gait training for stroke rehabilitation: A review. Journal of NeuroEngineering and Rehabilitation, 9, 65.

    Article  Google Scholar 

  • Rastegarpanah, A., & Mozafar, S. (2016). Lower limb rehabilitation using patient data. Applied Bionics and Biomechanics, 2016, 1–10.

    Google Scholar 

  • Rezazadeh, S., & Behzadipour, S. (2011). Workspace analysis of multibody cable-driven mechanisms. Journal of Mechanisms and Robotics. ASME, 3, 021005.

    Article  Google Scholar 

  • Spong, W. M., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. New Delhi: Wiley.

    Google Scholar 

  • Winter, D. A. (2009). Biomechanics and motor control of human movement. New York: Wiley.

    Book  Google Scholar 

  • Yang, J., Marler, R. T., Kim, H. J., Arora, J. S., & Abdel-Malek, K. (2004). Multi-objective optimization for upper body posture prediction. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY (pp. 1–18). American Institute of Aeronautics and Astronautics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hachmia Faqihi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faqihi, H., Saad, M., Benjelloun, K., Benbrahim, M., Kabbaj, M.N. (2019). Cable-Driven Parallel Robot Modelling for Rehabilitation Use. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) New Developments and Advances in Robot Control. Studies in Systems, Decision and Control, vol 175. Springer, Singapore. https://doi.org/10.1007/978-981-13-2212-9_4

Download citation

Publish with us

Policies and ethics