Skip to main content

On the Tip–Path-Plane Flapping Angles Estimation for Small–Scale Flybarless Helicopters at Near–Hover

  • Chapter
  • First Online:
New Developments and Advances in Robot Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 175))

  • 719 Accesses

Abstract

Observing the Tip-path-plane (TPP) flapping motion is essential for characterizing the helicopter’s main rotor dynamics. The high-order harmonics of the rotor blade flapping periodic motion are considered the major sources of helicopter vibration. However, incorporating precise information of the flapping dynamics with the overall helicopter dynamic model describes better the main rotor motion. This enables designers to innovate blade designs that have less dynamic vibration. Moreover, the flapping states are crucial for analysing the main rotor axial force and moment components. However, obtaining measurements for the flapping states is not directly possible. This mandates researchers in the field to exclude the flapping dynamics, despite being essential, and use some algebraic expressions and numerical approximations instead. This chapter addresses the problem of designing a model-based estimation algorithm for the unobservable flapping angles while a near-hover flight is being carried out. A Kalman state estimation algorithm is designed to provide accurate flapping estimates for the Maxi Joker 3 flapping angles. The presented estimator has succeeded in obtaining accurate longitudinal and lateral flapping angles estimates with small root mean square error of estimation of 0.3770 and 0.2464, respectively. Besides several simulation tests, a real outdoor near-hover flight was performed to validate the proposed estimation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez, M. F., & Speyer, J. L. (2008). GPS measurement noise estimation in non ideal environments. Navigation , 55(1), 55–66.

    Article  Google Scholar 

  • Abdel-Hafez, M. F. (2010). The autocovariance least-squares technique for GPS measurement noise estimation. IEEE Transactions on Vehicular Technology, 59(2), 574–588.

    Article  Google Scholar 

  • Al-Sharman, M. (2015). Auto takeoff and precision landing using integrated GPS/INS/Optical flow solution. Master thesis, American University of Sharjah, Sharjah.

    Google Scholar 

  • Al-Sharman, M. (2016). Attitude estimation for a small-scale flybarless helicopter. In Multisensor attitude estimation: Fundamental concepts and applications. Boca Raton: CRC Press.

    Google Scholar 

  • Al-Sharman, M., Abdel-Hafez, M., & Al-Omari, M. (2014). State estimation for a small scale flybar-less helicopter. In 2nd International Conference on System-Integrated Intelligence: Challenges for Product and Production Engineering, Bremen, Germany.

    Google Scholar 

  • Al-Sharman, M., Abdel-Hafez, M., & Al-Omari, M. (2015). Attitude and flapping angles estimation for a small-scale flybarless helicopter using a Kalman filter. IEEE sensors Journal, 15(4), 2114–2122.

    Article  Google Scholar 

  • Al-Sharman, M. K., Emran, B. J. M., Jaradat, A., Najjaran, H., Al-Husari, R., & Zweiri, Y. (2018a). Precision landing using an adaptive fuzzy multi-sensor data fusion architecture. Applied soft computing, 69, 149–164.

    Article  Google Scholar 

  • Al-Sharman, M., Al-Jarrah, M., & Abdel-Hafez, M. (2018b). Auto takeoff and precision terminal-phase landing using an experimental optical flow model for GPS/INS enhancement. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 5(1), pp. 011001-1–011001-17.

    Google Scholar 

  • Allred, C. J., Churchill, D., & Buckner, G. D. (2017). Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration. Mechanical Systems and Signal Processing, 91, 183–197.

    Article  Google Scholar 

  • Alshoubaki, A., Al-Sharman, M., & Al-Jarrah, M. A. (2015). Flybarless helicopter autopilot rapid prototyping using hardware in the loop simulation. In 10th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, UAE.

    Google Scholar 

  • Chen, R. T. (1987). Flap-lag equations of motion of rigid, articulated rotor blade with three hinge sequences. Washington, DC: NASA.

    Google Scholar 

  • Chen, R. T. N. (1990). A survey of nonuniform inflow models for rotorcraft flight dynamics and control applications. VERTICA, 2(14), 147–184.

    Google Scholar 

  • Gavrilets, V. (2003). Autonomous aerobatic maneuvering of miniature. Ph.D. thesis, Massacheutes Institute of Technology.

    Google Scholar 

  • Gavrilets, V., Mettler, B., & Feron, E. (2001). Nonlinear model for a smallsize acrobatic helicopter. In Proceedings of AIAA Guidance, Navigation, and Control Conference, Montreal, QC, Canada, 2001, Paper AIAA-2001-4333.

    Google Scholar 

  • Gavrilets, V., Martinos, I., Mettler, B., & Feron, E. (2002). Control logic for automated aerobatic flight of miniature helicopter. In AIAA Guidance, Navigation and Control Conference, Monterey, CA, USA 2002.

    Google Scholar 

  • Hald, U., Hesselbaek, M., Holmgaard, J. T., Jensen, C. S., Jakobsen, S. L., & Siegumfeldt, M. Autonomous helicopter-modelling and control. Aalborg: Aalborg University.

    Google Scholar 

  • Johnson, W. (1981). Comparison of calculated and measured helicopter rotor lateral flapping angles. Journal of the American Helicopter Society, 26(2), 46–50.

    Article  Google Scholar 

  • Leishman, J. G. (2000). Principles of helicopter aerodynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Liu, H., Lu, G., & Zhong, Y. (2013). Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Transactions on Industrial Electronics, 60(10), 4627–4636.

    Article  Google Scholar 

  • Marantos, P., Bechlioulis, C. P., & Kyriakopoulos, K. J. (2017). Robust trajectory tracking control for small-scale unmanned helicopters with model Uncertainties. IEEE Transactions on Control Systems Technology, 25(6), 2010–2021.

    Article  Google Scholar 

  • Padfield, G. D. (1996). Helicopter flight dynamics: The theory and application of flying qualities and simulation modeling (AIAA education series). AIAA, Washington, DC.

    Google Scholar 

  • Perdomo, O., & Wei, F.-S. (2017). On the flapping motion of a helicopter blade. Applied Mathematical Modelling, 46, 299–311.

    Article  MathSciNet  Google Scholar 

  • Taamallah, S. (2011). Small-scale helicopter blade flap-lag equations of motion for a flybarless pitch-lag-flap main rotor. In AIAA Modeling and Simulation Technologies Conference, Portland.

    Google Scholar 

  • Zappa, E., Trainelli, L., Liu, R., Rolando, A., Cordisco, P., Vigoni, E., & Redaelli, M. (2016). Real time contactless sensor for helicopter blade angle measurement. In 2016 IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy.

    Google Scholar 

  • Zhu, B., & Zuo, Z. (2017). Approximate analysis for main rotor flapping dynamics of a model-scaled helicopter with Bell-Hiller stabilizing bar in hovering and vertical. Nonlinear Dynamics, 85(3), 1705–1717.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad K. Al–Sharman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al–Sharman, M.K., Abdel–Hafez, M.F. (2019). On the Tip–Path-Plane Flapping Angles Estimation for Small–Scale Flybarless Helicopters at Near–Hover. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) New Developments and Advances in Robot Control. Studies in Systems, Decision and Control, vol 175. Springer, Singapore. https://doi.org/10.1007/978-981-13-2212-9_16

Download citation

Publish with us

Policies and ethics