Skip to main content

Hybrid Methods for Macromolecular Modeling by Molecular Mechanics Simulations with Experimental Data

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1105))

Abstract

Hybrid approaches for the modeling of macromolecular complexes that combine computational molecular mechanics simulations with experimental data are discussed. Experimental data for biological molecular structures are often low-resolution, and thus, do not contain enough information to determine the atomic positions of molecules. This is especially true when the dynamics of large macromolecules are the focus of the study. However, computational modeling can complement missing information. Significant increase in computational power, as well as the development of new modeling algorithms allow us to model structures of biological macromolecules reliably, using experimental data as references. We review the basics of molecular mechanics approaches, such as atomic model force field, and coarse-grained models, molecular dynamics simulation and normal mode analysis and describe how they could be used for flexible fitting hybrid modeling with experimental data, especially from cryo-EM and SAXS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed A, Tama F (2013) Consensus among multiple approaches as a reliability measure for flexible fitting into cryo-EM data. J Struct Biol 182:67–77

    Article  CAS  Google Scholar 

  • Anami Y, Shimizu N, Ekimoto T, Egawa D, Itoh T, Ikeguchi M, Yamamoto K (2016) Apo- and antagonist-binding structures of vitamin D receptor ligand-binding domain revealed by hybrid approach combining small-angle X-ray scattering and molecular dynamics. J Med Chem 59:7888–7900

    Article  CAS  Google Scholar 

  • Barty A (2016) Single molecule imaging using X-ray free electron lasers. Curr Opin Struct Biol 40:186–194

    Article  CAS  Google Scholar 

  • Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  • Chen PC, Hub JS (2015) Interpretation of solution x-ray scattering by explicit-solvent molecular dynamics. Biophys J 108:2573–2584

    Article  CAS  Google Scholar 

  • Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupina VA, Simon AE, Dinman JD, Frank J, Ourmazd A (2014) Trajectories of the ribosome as a Brownian nanomachine. Proc Natl Acad Sci U S A 111:17492–17497

    Article  CAS  Google Scholar 

  • Frank J (2017) Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 12:209–212

    Article  CAS  Google Scholar 

  • Fritz BG, Roberts SA, Ahmed A, Breci L, Li W, Weichsel A, Brailey JL, Wysocki VH, Tama F, Montfort WR (2013) Molecular model of a soluble guanylyl cyclase fragment determined by small-angle X-ray scattering and chemical cross-linking. Biochemistry 52:1568–1582

    Article  CAS  Google Scholar 

  • Gallagher-Jones M, Rodriguez JA, Miao J (2016) Frontier methods in coherent X-ray diffraction for high-resolution structure determination. Q Rev Biophys 49

    Google Scholar 

  • Garman EF (2014) Developments in x-ray crystallographic structure determination of biological macromolecules. Science 343:1102–1108

    Article  CAS  Google Scholar 

  • Gorba C, Miyashita O, Tama F (2008) Normal-mode flexible fitting of high-resolution structure of biological molecules toward one-dimensional low-resolution data. Biophys J 94:1589–1599

    Article  CAS  Google Scholar 

  • Holdbrook DA, Burmann BM, Huber RG, Petoukhov MV, Svergun DI, Hiller S, Bond PJ (2017) A spring-loaded mechanism governs the clamp-like dynamics of the Skp chaperone. structure 25:1079–1088.e3

    Article  Google Scholar 

  • Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  CAS  Google Scholar 

  • Hub JS (2017) Interpreting solution X-ray scattering data using molecular simulations. Curr Opin Struct Biol 49:18–26

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38

    Article  CAS  Google Scholar 

  • Jin Q, Sorzano COS, de la Rosa-Trevín JM, Bilbao-Castro JR, Núñez-Ramírez R, Llorca O, Tama F, Jonić S (2014) Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes. Structure 22:496–506

    Article  CAS  Google Scholar 

  • Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589:2570–2577

    Article  CAS  Google Scholar 

  • Kim DN, Sanbonmatsu KY (2017) Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Biosci Rep 37

    Article  CAS  Google Scholar 

  • Lander GC, Saibil HR, Nogales E (2012) Go hybrid: EM, crystallography, and beyond. Curr Opin Struct Biol 22:627–635

    Article  CAS  Google Scholar 

  • Liu H, Hexemer A, Zwart PH (2012) The Small Angle Scattering ToolBox(SASTBX): an open-source software for biomolecular small-angle scattering. J Appl Crystallogr 45:587–593

    Article  CAS  Google Scholar 

  • Lopéz-Blanco JR, Chacón P (2013) iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. J Struct Biol 184:261–270

    Article  Google Scholar 

  • Louder RK, He Y, López-Blanco JR, Fang J, Chacón P, Nogales E (2016) Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 531:604–609

    Article  CAS  Google Scholar 

  • Mahajan S, Sanejouand YH (2015) On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch Biochem Biophys 567:59–65

    Article  CAS  Google Scholar 

  • McGreevy R, Teo I, Singharoy A, Schulten K (2016) Advances in the molecular dynamics flexible fitting method for cryo-EM modeling. Methods 100:50–60

    Article  CAS  Google Scholar 

  • Merzel F, Smith JC (2002) SASSIM: a method for calculating small-angle X-ray and neutron scattering and the associated molecular envelope from explicit-atom models of solvated proteins. Acta Crystallogr D Biol Crystallogr 58:242–249

    Article  Google Scholar 

  • Miao J, Ishikawa T, Robinson IK, Murnane MM (2015) Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science 348:530–535

    Article  CAS  Google Scholar 

  • Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL, Ban N, Frank J (2005) Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438:318–324

    Article  CAS  Google Scholar 

  • Miyashita O, Joti Y (2017) X-ray free electron laser single-particle analysis for biological systems. Curr Opin Struct Biol 43:163–169

    Article  CAS  Google Scholar 

  • Miyashita O, Onuchic JN, Wolynes PG (2003) Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc Natl Acad Sci U S A 100:12570–12575

    Article  CAS  Google Scholar 

  • Miyashita O, Kobayashi C, Mori T, Sugita Y, Tama F (2017) Flexible fitting to cryo-EM density map using ensemble molecular dynamics simulations. J Comput Chem 38:1447–1461

    Article  CAS  Google Scholar 

  • Nguyen HT, Pabit SA, Meisburger SP, Pollack L, Case DA (2014) Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids. J Chem Phys 141:22D508

    Article  Google Scholar 

  • Oroguchi T, Ikeguchi M (2011) Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations. J Chem Phys 134:025102

    Article  Google Scholar 

  • Orzechowski M, Tama F (2008) Flexible fitting of high-resolution x-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations. Biophys J 95:5692–5705

    Article  CAS  Google Scholar 

  • Pelikan M, Hura G, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28:174–189

    Article  CAS  Google Scholar 

  • Perilla JR, Goh BC, Cassidy CK, Liu B, Bernardi RC, Rudack T, Yu H, Wu Z, Schulten K (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  • Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    Article  CAS  Google Scholar 

  • Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496:477–481

    Article  CAS  Google Scholar 

  • Saunders MG, Voth GA (2013) Coarse-graining methods for computational biology. Annu Rev Biophys 42:73–93

    Article  CAS  Google Scholar 

  • Schröder GF, Brunger AT, Levitt M (2007) Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15:1630–1641

    Article  Google Scholar 

  • Singharoy A, Teo I, McGreevy R, Stone JE, Zhao J, Schulten K (2016) Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. Elife 5:e16105

    Article  Google Scholar 

  • Suhre K, Sanejouand Y-H (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    Article  CAS  Google Scholar 

  • Suhre K, Navaza J, Sanejouand YH (2006) NORMA: a tool for flexible fitting of high-resolution protein structures into low-resolution electron-microscopy-derived density maps. Acta Crystallogr D Biol Crystallogr 62:1098–1100

    Article  Google Scholar 

  • Svergun D, Barberato C, Koch MHJ (1995) CRYSOL -- a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  • Takada S, Kanada R, Tan C, Terakawa T, Li W, Kenzaki H (2015) Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations. Acc Chem Res 48:3026–3035

    Article  CAS  Google Scholar 

  • Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    Article  CAS  Google Scholar 

  • Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41:1–7

    Article  CAS  Google Scholar 

  • Tama F, Wriggers W, Brooks CL III (2002) Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory. J Mol Biol 321:297–305

    Article  CAS  Google Scholar 

  • Tama F, Valle M, Frank J, Brooks CL III (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 100:9319–9323

    Article  CAS  Google Scholar 

  • Tama F, Miyashita O, Brooks CL (2004) Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. J Mol Biol 337:985–999

    Article  CAS  Google Scholar 

  • Tan RK-Z, Devkota B, Harvey SC (2008) YUP.SCX: coaxing atomic models into medium resolution electron density maps. J Struct Biol 163:163–174

    Article  CAS  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single- parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    Article  CAS  Google Scholar 

  • Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    Article  CAS  Google Scholar 

  • Tria G, Mertens HD, Kachala M, Svergun DI (2015) Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2:207–217

    Article  CAS  Google Scholar 

  • Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci U S A 111:5544–5549

    Article  CAS  Google Scholar 

  • Vashisth H, Skiniotis G, Brooks CL (2012) Using enhanced sampling and structural restraints to refine atomic structures into low-resolution electron microscopy maps. Structure 20:1453–1462

    Article  CAS  Google Scholar 

  • Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009) An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields. Proteins 75:430–441

    Article  CAS  Google Scholar 

  • Whitford PC, Ahmed A, Yu Y, Hennelly SP, Tama F, Spahn CMT, Onuchic JN, Sanbonmatsu KY (2011) Excited states of ribosome translocation revealed through integrative molecular modeling. Proc Natl Acad Sci U S A 108:18943–18948

    Article  CAS  Google Scholar 

  • Wu X, Subramaniam S, Case DA, Wu KW, Brooks BR (2013) Targeted conformational search with map-restrained self-guided Langevin dynamics: application to flexible fitting into electron microscopic density maps. J Struct Biol 183:429–440

    Article  CAS  Google Scholar 

  • Xu X, Yan C, Wohlhueter R, Ivanov I (2015) Integrative Modeling of Macromolecular Assemblies from Low to Near-Atomic Resolution. Comput Struct Biotechnol J 13:492–503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sandhya P. Tiwari and Ashutosh Srivastava for carefully reading the manuscript and providing comments. This work was supported by FOCUS for Establishing Supercomputing Center of Excellence, JSPS KAKENHI Grant Number 17K07305, 16K07286, 26119006, 15K21711 and RIKEN Dynamic Structural Biology Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Tama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyashita, O., Tama, F. (2018). Hybrid Methods for Macromolecular Modeling by Molecular Mechanics Simulations with Experimental Data. In: Nakamura, H., Kleywegt, G., Burley, S., Markley, J. (eds) Integrative Structural Biology with Hybrid Methods. Advances in Experimental Medicine and Biology, vol 1105. Springer, Singapore. https://doi.org/10.1007/978-981-13-2200-6_13

Download citation

Publish with us

Policies and ethics