Skip to main content

Trans-lamina Cribrosa Pressure Difference Activates Mechanical Stress Signal Transduction to Induce Glaucomatous Optic Neuropathy: A Hypothesis

  • Chapter
  • First Online:
Intraocular and Intracranial Pressure Gradient in Glaucoma

Part of the book series: Advances in Visual Science and Eye Diseases ((AVSED,volume 1))

Abstract

Glaucoma is the leading cause of irreversible blindness in the world. According to a recent meta-analysis, the global prevalence of glaucoma has reached 3.54%, and the number of people with glaucoma worldwide would increase to 110 million in 2040. Glaucoma, as one of the most common eye conditions resulting in blindness, has been recognized as a major public health challenge [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90.

    Article  Google Scholar 

  2. De Moraes CG, Demirel S, Gardiner SK, et al. Effect of treatment on the rate of visual field change in the ocular hypertension treatment study observation group. Investig Ophthalmol Vis Sci. 2012;53(4):1704–9.

    Article  Google Scholar 

  3. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.

    Article  CAS  Google Scholar 

  4. Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39(1):23–42.

    Article  CAS  Google Scholar 

  5. Burgoyne CF, Downs JC. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008;17(4):318–28.

    Article  Google Scholar 

  6. Yamamoto T, Kitazawa Y. Vascular pathogenesis of normal-tension glaucoma: a possible pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog Retin Eye Res. 1998;17(1):127–43.

    Article  CAS  Google Scholar 

  7. Liang YB, Friedman DS, Zhou Q, et al. Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study. Investig Ophthalmol Visual Sci. 2011;52(11):8250–7.

    Article  Google Scholar 

  8. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–26.

    Article  Google Scholar 

  9. Berdahl JP, Allingham RR, Johnson DH. Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology. 2008;115(5):763–8.

    Article  Google Scholar 

  10. Berdahl JP, Fautsch MP, Stinnett SS, et al. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.

    Article  Google Scholar 

  11. Wostyn P, De Groot V, Van Dam D, et al. Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension. Clin Exp Optom. 2016;99(3):213–8.

    Article  Google Scholar 

  12. Ren R, Zhang X, Wang N, et al. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89(2):e142–8.

    Article  Google Scholar 

  13. Siaudvytyte L, Januleviciene I, Daveckaite A, et al. Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma. Eye. 2015;29(10):1242–50.

    Article  CAS  Google Scholar 

  14. Yang D, Fu J, Hou R, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014;55(5):3067–73.

    Article  Google Scholar 

  15. Zhang Z, Wu S, Jonas JB, et al. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Acta Ophthalmol. 2016;94(3):266–75.

    Article  CAS  Google Scholar 

  16. Hernandez MR, Igoe F, Neufeld AH. Extracellular matrix of the human optic nerve head. Am J Ophthalmol. 1986;102(2):139–48.

    Article  CAS  Google Scholar 

  17. Morrison JC, Jerdan JA, L’Hernault NL, et al. The extracellular matrix composition of the monkey optic nerve head. Invest Ophthalmol Vis Sci. 1988;29(7):1141–50.

    Google Scholar 

  18. Hernandez MR, Igoe F, Neufeld AH. Cell culture of the human lamina cribrosa. Invest Ophthalmol Vis Sci. 1988;29(1):78–89.

    CAS  PubMed  Google Scholar 

  19. Ingber DE. Tensegrity: the architectural basis of cellular mechano-transduction[J]. Annu Rev Physiol. 2003;59(1):575–99.

    Article  Google Scholar 

  20. Visavadiya NP, Keasey MP, Razskazovskiy V, et al. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal. 2016;14(1):32.

    Article  Google Scholar 

  21. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science. 1995;268(5208):233–9.

    Article  CAS  Google Scholar 

  22. Cabodi S, Di Stefano P, Leal Mdel P, et al. Integrins and signal transduction. Adv Exp Med Biol. 2010;674:43–54.

    Article  CAS  Google Scholar 

  23. Martins RP, Finan JD, Guilak F, et al. Mechanical regulation of nuclear structure and function. Annu Rev Biomed Eng. 2012;14:431–55.

    Article  CAS  Google Scholar 

  24. Tajik A, Zhang Y, Wei F, et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater. Dec 2016;15(12):1287–96.

    Article  CAS  Google Scholar 

  25. George CH, Higgs GV, Lai FA. Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ Res. 2003;93(6):531–40.

    Article  CAS  Google Scholar 

  26. Liu B, Lu S, Zheng S, et al. Two distinct phases of calcium signalling under flow. Cardiovasc Res. 2011;91(1):124–33.

    Article  CAS  Google Scholar 

  27. Bhosale G, Sharpe JA, Sundier SY, et al. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann N Y Acad Sci. 2015;1350:107–16.

    Article  CAS  Google Scholar 

  28. Zou H, Lifshitz LM, Tuft RA, et al. Visualization of Ca2+ entry through single stretch-activated cation channels. Proc Natl Acad Sci USA. 2002;99(9):6404–9.

    Article  CAS  Google Scholar 

  29. Tehrani S, Davis L, Cepurna WO, et al. Astrocyte structural and molecular response to elevated intraocular pressure occurs rapidly and precedes axonal tubulin rearrangement within the optic nerve head in a rat model. PLoS One. 2016;11(11):e0167364.

    Article  Google Scholar 

  30. Santos AR, Corredor RG, Obeso BA, et al. beta1 integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival. PLoS One. 2012;7(10):e48332.

    Article  CAS  Google Scholar 

  31. Ryskamp DA, Witkovsky P, Barabas P, et al. The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci. 2011;31(19):7089–101.

    Article  CAS  Google Scholar 

  32. Krizaj D, Ryskamp DA, Tian N, et al. From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res. 2014;39(2):105–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Wu, S., Wang, N. (2019). Trans-lamina Cribrosa Pressure Difference Activates Mechanical Stress Signal Transduction to Induce Glaucomatous Optic Neuropathy: A Hypothesis. In: Wang, N. (eds) Intraocular and Intracranial Pressure Gradient in Glaucoma. Advances in Visual Science and Eye Diseases, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-13-2137-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2137-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2136-8

  • Online ISBN: 978-981-13-2137-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics