Skip to main content

Nucleosides and Oligonucleotides Incorporating 2-Thiothymine or 2-Thiouracil Derivatives as Modified Nucleobases

  • Chapter
  • First Online:
Synthesis of Therapeutic Oligonucleotides

Abstract

Nucleosides containing 2-thiothymine and 2-thiouracil as base moieties have been incorporated into oligonucleotides to enhance their hybridization affinity and base discrimination ability. For the incorporation of these thio-bases into oligonucleotides, efficient methods for the synthesis of thio-modified nucleosides and the incorporation of the thio-nucleosides into oligonucleotides under solid-phase conditions are necessary. In this chapter, the physicochemical properties of thio-modified bases and the methods for the syntheses of 2-thiouridine and 2-thiothymidine are described. In addition, the solid-phase synthesis of oligonucleotides incorporating these thio-nucleosides is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ura:

Uracil

s2Ura:

2-Thiouracil

Thy:

Thymine

s2Thy:

2-Thiothymine

U:

Uridine

s2U:

2-Thiouridine

T:

Thymidine

s2T:

2-Thiothymidine

rT:

Ribothymidine

rs2T:

2-Thioribothymidine

Bz:

Benzoyl

Tol:

Toluoyl

DMTr:

4,4′-dimethoxytrityl

References

  1. Agris PF, Sierzputowska-Gracz H, Smith W, Malkiewicz A, Sochacka E, Nawrot B (1992) Thiolation of uridine carbon-2 restricts the motional maintain genome integrity. J Am Chem Soc 114:2652–2656

    Article  CAS  Google Scholar 

  2. Allred AL (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221

    Article  CAS  Google Scholar 

  3. Aoki Y, Nakamura A, Yokota T, Saito T, Okazawa H, Nagata T, Takeda S (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 18:1995–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartos P, Ebenryter-Olbinska K, Sochacka E, Nawrot B (2015) The influence of the C5 substituent on the 2-thiouridine desulfuration pathway and the conformational analysis of the resulting 4-pyrimidinone products. Bioorg Med Chem 23:5587–5594

    Article  CAS  PubMed  Google Scholar 

  5. Biswal HS, Wategaonkar S (2009) Nature of the N−H···S hydrogen bond. J Phys Chem A 113:12763–12773

    Article  CAS  PubMed  Google Scholar 

  6. Biswal HS, Wategaonkar S (2010) O-H···O versus O-H···S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog. J Phys Chem A 114:5947–5973

    Article  CAS  PubMed  Google Scholar 

  7. Bloomfield VA, Crothers DM, Tinoco I Jr (2000) Nucleic acids: structures, properties, and functions, University Science Books Sausalito, Turner DH, p 259 Chapter 8: Conformational changes

    Google Scholar 

  8. Bondi A (1964) van der Waals Volumes and Radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  9. Chen LC, Su TL, Pankiewicz KW, Watanabe KA (1989) Synthesis of 2,5′-anhydro-2-thiouridine and its conversion to 3′-O-acetyl-2,2′-anhydro- 5′-chloro-5′-deoxy-2-thiouridine. Studies directed toward the synthesis of 2′-deoxy-2′-substituted arabino nucleosides. Nucleosides Nucleotides Nucleic Acids 8:1179–1188

    Article  CAS  Google Scholar 

  10. Diop-Frimpong B, Prakash TP, Rajeev KG, Manoharan M, Egli M (2015) Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2’-O-[2-(methoxy)ethyl]-2-thiothymidines. Nucleic Acids Res 33:5297–5307

    Google Scholar 

  11. Kuimelis RG, Nambiar KP (1994) Synthesis of oligodeoxynucleotides containing 2-thiopyrimidine residues—a new protection scheme. Nucleic Acids Res 22:1429–1436

    Google Scholar 

  12. Kumar RK, Davis DR (1995) Synthesis of oligoribonucleotides containing 2-thiouridine: incorporation of 2-thiouridine phosphoramidite without base protection. J Org Chem 60:7726–7727

    Article  CAS  Google Scholar 

  13. Kumar RK, Davis DR (1997) Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 25:1272–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larsen AT, Fahrenbach AC, Sheng J, Pian J, Szostak JW (2015) Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization. Nucleic Acids Res 43:7675–7687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lide DR (ed) (2004) CRC handbook of chemistry and physics, 84th edn. CRC Press LLC, Boca Raton

    Google Scholar 

  16. Masaki Y, Miyasaka R, Hirai K, Tsunoda H, Ohkubo A, Seio K, Sekine M (2012) Prediction of the stability of modified RNA duplexes based on deformability analysis: oligoribonucleotide derivatives modified with 2′-O-cyanoethyl-5-propynyl-2-thiouridine as a promising component. Chem Commn 48:7313–7315

    Article  CAS  Google Scholar 

  17. Masaki Y, Inde T, Nagata T, Tanihata J, Kanamori T, Seio K, Takeda S, Sekine M (2015) Enhancement of exon skipping in mdx52 mice by 2′-O-methyl-2-thioribothymidine incorporation into phosphorothioate oligonucleotides. Med Chem Commun 6:630–633

    Article  CAS  Google Scholar 

  18. Motorin Y, Helm M (2010) tRNA stabilization by modified nucleotides. Biochemist 49:4934–4944

    Article  CAS  Google Scholar 

  19. Mullah B, Andrus A (1995) Oxidative conversion of N-dimethylformamidine nucleosides to N-cyano nucleosides. Tetrahedron Lett 36:4373–4376

    Article  CAS  Google Scholar 

  20. Nielsen J, Dahl O (1987) Improved synthesis of (Pri 2 N2) POCH2CH2CN. Nucleic Acids Res 15:3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okamoto I, Shohda K, Seio K, Sekine M (2003) A new route to 2‘-O-Alkyl-2-thiouridine derivatives via 4-O-protection of the uracil base and hybridization properties of oligonucleotides incorporating tThese modified nucleoside derivatives. J Org Chem 68:9971–9982

    Article  CAS  PubMed  Google Scholar 

  22. Okamoto I, Seio K, Sekine M (2006) Improved synthesis of oligonucleotides containing 2-thiouridine derivatives by use of diluted iodine solution. Tetrahedron Lett 47:583–585

    Article  CAS  Google Scholar 

  23. Okamoto I, Seio K, Sekine M (2008) Study of the base discrimination ability of DNA and 2′-O-methylated RNA oligomers containing 2-thiouracil bases towards complementary RNA or DNA strands and their application to single base mismatch detection. Bioorg Med Chem 16:6034–6041

    Article  CAS  PubMed  Google Scholar 

  24. Østergaard ME, Kumar P, Nichols J, Watt A, Sharma PK, Nielsen P, Seth PP (2015) Allele-selective inhibition of mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-deoxythymidine-modified antisense oligonucleotides. Nucleic Acid Ther 25:266–274

    Article  CAS  PubMed  Google Scholar 

  25. Saneyoshi H, Seio K, Sekine M (2005) A general method for the synthesis of 2‘-O-cyanoethylated oligoribonucleotides having promising hybridization affinity for DNA and RNA and enhanced nuclease resistance. J Org Chem 70:10453–10460

    Article  CAS  PubMed  Google Scholar 

  26. Shigeta S, Mori S, Kira T, Takahashi K, Kodama E, Konno K, Nagata T, Kato H, Wakayama T, Koike N, Saneyoshi M (1999) Antiherpesvirus activities and cytotoxicities of 2-thiopyrimidine nucleoside analogues in vitro. Antivir Chem Chemother 10:195–209

    Article  CAS  PubMed  Google Scholar 

  27. Shigeta S, Mori S, Watanabe F, Takahashi K, Nagata T, Wakayama T, Saneyoshi M (2002) Synthesis and antiherpesvirus activities of 5-alkyl-2-thiopyrimidine nucleoside analogues. Antivir Chem Chemother 13:67–82

    Article  CAS  PubMed  Google Scholar 

  28. Shinha ND, Biernat J, Köster H (1983) β -Cyanoethyl N,N-dialkylamino/N-morpholinomonochloro phosphoamidites, new phosphitylating agents facilitating ease of deprotection and work-up of synthesized oligonucleotides. Tetrahedron Lett 24:5843–5846

    Article  Google Scholar 

  29. Shohda K, Okamoto I, Wada T, Seio K, Sekine M (2000) Synthesis and properties of 2′-O-methyl-2-thiouridine and oligoribonucleotides containing 2′-O-methyl-2-thiouridine. Bioorg Med Chem Lett 10:1795–1798

    Article  CAS  PubMed  Google Scholar 

  30. Šponer J, Leszczynski J, Hobza P (1997) Thioguanine and thiouracil: hydrogen-bonding and stacking properties. J Phys Chem A 101:9489–9495

    Article  Google Scholar 

  31. Šponer J, Leszczynski J, Hobza P (2001) Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 61:3–31

    Article  PubMed  Google Scholar 

  32. Šponer J, Jurečka P, Hobza P (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J Am Chem Soc 126:10142–10151

    Article  CAS  PubMed  Google Scholar 

  33. Stone AJ (1996) The theory of intermolecular forces. Oxford University press, Oxford

    Google Scholar 

  34. Testa SM, Disney MD, Turner DH, Kierzek R (1999) Thermodynamics of RNA−RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. Biochemistry 38:16655–16662

    Article  CAS  PubMed  Google Scholar 

  35. Ueda T, Shibuya S (1970) Synthesis of sulfur-bridged uracil anhydronucleosides. Chem Pharm Bull 18:1076–1078

    Article  CAS  Google Scholar 

  36. Varani G, McClain W (2000) The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vorbruggen H, Strehlke P (1973) Eine einfache synthese von 2-thiopyrimidin-nucleosiden. Chem Ber 106:3039–3061

    Article  Google Scholar 

  38. Yamamoto Y, Yokoyama S, Miyazawa T, Watanabe K, Higuchi S (1983) NMR analyses on the molecular mechanism of the conformational rigidity of 2-thioribothymidine, a modified nucleoside in extreme thermophile tRNAs. FEBS Lett 157:95–99

    Article  CAS  PubMed  Google Scholar 

  39. Zhang R, Eriksson LA (2010) Theoretical study on conformational preferences of ribose in 2-thiouridine—the role of the 2′OH group. Phys Chem Chem Phys 12:3690–3697

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Seio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seio, K., Sekine, M. (2018). Nucleosides and Oligonucleotides Incorporating 2-Thiothymine or 2-Thiouracil Derivatives as Modified Nucleobases. In: Obika, S., Sekine, M. (eds) Synthesis of Therapeutic Oligonucleotides. Springer, Singapore. https://doi.org/10.1007/978-981-13-1912-9_7

Download citation

Publish with us

Policies and ethics