Skip to main content

Various Coupling Agents in the Phosphoramidite Method for Oligonucleotide Synthesis

  • Chapter
  • First Online:
Synthesis of Therapeutic Oligonucleotides

Abstract

This review selects some representative coupling agents used for internucleotide bond formation reactions in the phosphoramidite method, which is now the most widely employed method for the chemical synthesis of oligodeoxyribonucleotides and oligoribonucleotides, and it describes their utility, efficiency, and drawbacks. Moreover, the mechanism of the coupling of the nucleoside phosphoramidite and nucleoside promoted by the coupling agent is discussed in some cases. The selected coupling agents are 1H-tetrazole, 5-ethylthio-1H-tetrazole (ETT), 5-benzylthio-1H-tetrazole (BTT), 5-[3,5-bis(trifluoromethyl)phenyl]-1H-tetrazole (Activator 42), 4,5-dicyanoimidazole (DCI), certain carboxylic acids, and various acid/azole complexes such as benzimidazolium triflate (BIT) and saccharin 1-methylimidazole (SMI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaucage SL, Iyer RP (1992) Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48:2223–2311

    Article  CAS  Google Scholar 

  2. Reese CB (2002) The chemical synthesis of oligo- and poly-nucleotides: a personal commentary. Tetrahedron 58:8893–8920

    Article  CAS  Google Scholar 

  3. (2006) Chapter 4 synthesis of oligonucleotides. In: Blackburn GM, Gait MJ, Loakes D, Williams DM (eds) Nucleic acids in chemistry and biology, 3rd edn. The Royal Society of Chemistry, Cambridge, pp 143–166

    Google Scholar 

  4. Khorana HG (1968) Nucleic acid synthesis. Pure Appl Chem 17:349–381

    Article  CAS  Google Scholar 

  5. Khorana HG (1968) Synthesis in the study of nucleic acids. Fourth Jubilee Lect Biochem J 109:709–725

    CAS  Google Scholar 

  6. Letsinger RL, Mahadevan V (1965) Oligonucleotide synthesis on a polymer support. J Am Chem Soc 87:3526–3527

    Article  CAS  PubMed  Google Scholar 

  7. Letsinger RL, Ogilvie KK (1967) Convenient method for stepwise synthesis of oligothymidylate derivatives in large-scale quantities. J Am Chem Soc 89:4801–4803

    Article  CAS  Google Scholar 

  8. Reese CB (1978) The chemical synthesis of oligo- and poly-nucleotides by the phosphotriester approach. Tetrahedron 34:3143–3179

    Article  CAS  Google Scholar 

  9. Letsinger RL, Finnan JL, Heavner GA, Lunsford WB (1975) Nucleotide chemistry. XX. Phosphite coupling procedure for generating internucleotide links. J Am Chem Soc 97:3278–3279

    Article  CAS  PubMed  Google Scholar 

  10. Letsinger RL, Lunsford WB (1976) Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J Am Chem Soc 98:3655–3661

    Article  CAS  PubMed  Google Scholar 

  11. Beaucage SL, Caruthers MH (1981) Deoxynucleoside phosphoramidites–A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862

    Article  CAS  Google Scholar 

  12. Caruthers MH (1985) Gene synthesis machines: DNA chemistry and its uses. Science 230:281–285

    Article  CAS  PubMed  Google Scholar 

  13. Caruthers MH (1991) Chemical synthesis of DNA and DNA analogs. Acc Chem Res 24:278–284

    Article  CAS  Google Scholar 

  14. Beaucage SL, Caruthers MH (2001) Synthetic strategies and parameters involved in the synthesis of oligodeoxyribonucleotides according to the phosphoramidite method. In: Beaucage SL, Bergstrom DE, Glick GD, Jones RA (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 3.3.1–3.3.20

    Google Scholar 

  15. Caruthers MH (2013) Chemical synthesis of DNA, RNA, and their analogues. Chem Int 35:8–11

    CAS  Google Scholar 

  16. Corby NS, Kenner GW, Todd AR (1952) 704. Nucleotides. Part XVI. Ribonucleoside-5′ phosphites. A new method for the preparation of mixed secondary phosphites. J Chem Soc:3669–3675

    Google Scholar 

  17. Hall RH, Todd A, Webb RF (1957) 644. Nucleotides. Part XLI. Mixed anhydrides as intermediates in the synthesis of dinucleoside phosphates. J Chem Soc:3291–3296

    Google Scholar 

  18. Froehler BC, Ng PG, Matteucci MD (1986) Synthesis of DNA via deoxynudeoside H-phosphonate intermediates. Nucleic Acids Res 14:5399–5407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strömberg R, Stawinski J (2001) Synthesis of oligodeoxyribo- and oligoribonucleotides according to the H-phosphonate method. In: Beaucage SL, Bergstrom DE, Glick GD, Jones RA (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 3.4.1–3.4.15

    Google Scholar 

  20. Sanghvi YS (2000) Large-scale oligonucleotide synthesis. Org Proc Res Dev 4:168–169

    Article  CAS  Google Scholar 

  21. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  CAS  PubMed  Google Scholar 

  22. (2006) Chapter 5 nucleic acids in biotechnology. In: Blackburn GM, Gait MJ, Loakes D, Williams DM (eds) Nucleic acids in chemistry and biology, 3rd edn. The Royal Society of Chemistry, Cambridge, pp 167–208

    Google Scholar 

  23. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  Google Scholar 

  24. Hughes RA, Miklos AE, Ellington AD (2011) Gene synthesis: methods and applications. Methods Enzymol 498:277–309

    Article  CAS  PubMed  Google Scholar 

  25. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Meth 11:499–507

    Article  CAS  Google Scholar 

  26. Dickey DD, Giangrande PH (2016) Oligonucleotide aptamers: a next-generation technology for the capture and detection of circulating tumor cells. Methods 97:94–103

    Article  CAS  PubMed  Google Scholar 

  27. Hyodo M, Hayakawa Y (2004) An improved method for synthesizing cyclic bis(3′–5′)diguanylic acid (c-di-GMP). Bull Chem Soc Jpn 77:2089–2093

    Article  CAS  Google Scholar 

  28. Hyodo M, Sato Y, Hayakawa Y (2006) Synthesis of cyclic bis(3′-5′)diguanylic acid (c-di-GMP) analogs. Tetrahedron 62:3089–3094

    Article  CAS  Google Scholar 

  29. Hyodo M, Hayakawa Y (2008) Synthesis, chemical properties and biological activities of cyclic bis(3′–5′)diguanylic acid (c-di-GMP) and its analogues. In: Modified nucleosides. Wiley-VCH, pp 343–363

    Google Scholar 

  30. Schwede F, Genieser H-G, Rentsch A (2017) The chemistry of the noncanonical cyclic dinucleotide 2′3′-cGAMP and its analogs. In: Seifert R (ed) Non-canonical cyclic nucleotides. Springer, Cham, pp 359–384

    Google Scholar 

  31. Hayakawa Y, Uchiyama M, Noyori R (1986) Nonaqueous oxidation of nucleoside phosphites to the phosphates. Tetrahedron Lett 27:4191–4194

    Article  CAS  Google Scholar 

  32. Wincott FE (2001) Strategies for oligoribonucleotide synthesis according to the phosphoramidite method. In: Beaucage SL, Bergstrom DE, Glick GD, Jones RA (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 3.5.1–3.5.12

    Google Scholar 

  33. Bellon L (2001) Oligoribonucleotides with 2′-O-(tert-butyldimethylsilyl) groups. In: Beaucage SL, Bergstrom DE, Glick GD, Jones RA (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 3.6.1–3.6.13

    Google Scholar 

  34. Hayakawa Y (2001) Toward an ideal synthesis of oligonucleotides: development of a novel phosphoramidite method with high capability. Bull Chem Soc Jpn 74:1547–1565

    Article  CAS  Google Scholar 

  35. Tsukamoto M, Hayakawa Y (2005) Strategies useful for the chemical synthesis of oligonucleotides and related compounds. In: Atta-Ur-Rahman, Hayakawa Y (eds) Frontiers in organic chemistry, vol 1. Bentham, Hilversum, pp 3–40

    Chapter  Google Scholar 

  36. (2007) The Glen report 19(2). http://www.glenresearch.com/GlenReports/GR19-2CONT.html

  37. Höbartner C, Wachowius F (2010) Chemical synthesis of modified RNA. In: Mayer G (ed) The chemical biology of nucleic acids. Wiley, Chichester, pp 1–37

    Google Scholar 

  38. Wei X (2013) Coupling activators for the oligonucleotide synthesis via phosphoramidite approach. Tetrahedron 69:3615–3637

    Article  CAS  Google Scholar 

  39. Ohkubo A, Seio K, Sekine M (2006) DNA synthesis without base protection using the phosphoramidite approach. In: Beaucage SL, Bergstrom DE, Herdewijn P, Matsuda A (eds) Current protocols in nucleic acid chemistry. Wiley, Hoboken, pp 3.15.1–3.15.22

    Chapter  Google Scholar 

  40. Hayakawa Y, Kawai R, Kataoka M (2001) Nucleotide synthesis via methods without nucleoside-base protection. Eur J Pharm Sci 13:5–16

    Article  CAS  PubMed  Google Scholar 

  41. Benson FR (1947) The chemistry of the tetrazoles. Chem Rev 41:1–61

    Article  CAS  PubMed  Google Scholar 

  42. (2010) The Glen report 22(1). http://www.glenresearch.com/GlenReports/GR22-1CONT.html

  43. Wang Z, Olsen P, Ravikumar VT (2007) A novel universal linker for efficient synthesis of phosphorothioate oligonucleotides. Nucleosides Nucleotides Nucleic Acids 26:259–269

    Article  CAS  PubMed  Google Scholar 

  44. LeProust EM, Peck BJ, Spirin K, McCuen HB, Moore B, Namsaraev E, Caruthers MH (2010) Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38:2522–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dellinger DJ, Monfregola L, Caruthers M, Roy M (2015) US Patent 0,315,227 A1

    Google Scholar 

  46. Vargeese C, Carter J, Yegge J, Krivjansky S, Settle A, Kropp E, Peterson K, Pieken W (1998) Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res 26:1046–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scaringe SA, Francklyn C, Usman N (1990) Chemical synthesis of biologically active oligoribonucleotides using β-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Res 18:5433–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wincott F, DiRenzo A, Shaffer C, Grimm S, Tracz D, Workman C, Sweedler D, Gonzalez C, Scaringe S, Usman N (1995) Synthesis, deprotection, analysis and purification of RNA and ribosomes. Nucleic Acids Res 23:2677–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dahl BH, Nielsen J, Dahl O (1987) Mechanistic studies on the phosphoramidite coupling reaction in oligonucleotide synthesis. I. Evidence for nudeophilic catalysis by tetrazole and rate variations with the phosphorus substituents. Nucleic Acids Res 15:1729–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berner S, Mūhlegger K, Seliger H (1989) Studies on the role of tetrazole in the activation of phosphoramidites. Nucleic Acids Res 17:853–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McBride LJ, Caruthers MH (1983) An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett 24:245–248

    Article  CAS  Google Scholar 

  52. Pon RT, Damha MJ, Ogilvie KK (1985) Modification of guanine bases by nucleoside phosphoramidite reagents during the solid phase synthesis of oligonucleotides. Nucleic Acids Res 13:6447–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lieber E, Enkoji T (1961) Synthesis and properties of 5-(substituted) mercaptotetrazoles. J Org Chem 26:4472–4479

    Article  CAS  Google Scholar 

  54. LeBlanc BW, Jursic BS (1998) Preparation of 5-alkylthio and 5-arylthiotetrazoles from thiocyanates using phase transfer catalysis. Synth Commun 28:3591–3599

    Article  CAS  Google Scholar 

  55. Wright P, Lloyd D, Rapp W, Andrus A (1993) Large scale synthesis of oligonucleotides via phosphoramidite nucleosides and a high-loaded polystyrene support. Tetrahedron Lett 34:3373–3376

    Article  CAS  Google Scholar 

  56. Scaringe SA, Wincott FE, Caruthers MH (1998) Novel RNA synthesis method using 5′-O-silyl-2′-O-orthoester protecting groups. J Am Chem Soc 120:11820–11821

    Article  CAS  Google Scholar 

  57. Ohgi T, Masutomi Y, Ishiyama K, Kitagawa H, Shiba Y, Yano J (2005) A new RNA synthetic method with a 2′-O-(2-cyanoethoxymethyl) protecting group. Org Lett 7:3477–3480

    Article  CAS  PubMed  Google Scholar 

  58. Semenyuk A, Földesi A, Johansson T, Estmer-Nilsson C, Blomgren P, Brännvall M, Kirsebom LA, Kwiatkowski M (2006) Synthesis of RNA using 2′-O-DTM protection. J Am Chem Soc 128:12356–12357

    Article  CAS  PubMed  Google Scholar 

  59. Zhou C, Honcharenko D, Chattopadhyaya J (2007) 2-(4-Tolylsulfonyl)ethoxymethyl (TEM)-a new 2′-OH protecting group for solid-supported RNA synthesis. Org Biomol Chem 5:333–343

    Article  CAS  PubMed  Google Scholar 

  60. Lackey JG, Sabatino D, Damha MJ (2007) Solid-phase synthesis and on-column deprotection of RNA from 2′- (and 3′-) O-levulinated (Lv) ribonucleoside monomers. Org Lett 9:789–792

    Article  CAS  PubMed  Google Scholar 

  61. Krotz AH, Klopchin PG, Walker KL, Srivatsa GS, Cole DL, Ravikumar VT (1997) On the formation of longmers in phosphorothioate oligodeoxyribonucleotide synthesis. Tetrahedron Lett 38:3875–3878

    Article  CAS  Google Scholar 

  62. Welz R, Müller S (2002) 5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis. Tetrahedron Lett 43:795–797

    Article  CAS  Google Scholar 

  63. Wu X, Pitsch S (1998) Synthesis and pairing properties of oligoribonucleotide analogues containing a metal-binding site attached to β-D-allofuranosyl cytosine. Nucleic Acids Res 26:4315–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saneyoshi H, Ando K, Seio K, Sekine M (2007) Chemical synthesis of RNA via 2′-O-cyanoethylated intermediates. Tetrahedron 63:11195–11203

    Article  CAS  Google Scholar 

  65. Shiba Y, Masuda H, Watanabe N, Ego T, Takagaki K, Ishiyama K, Ohgi T, Yano J (2007) Chemical synthesis of a very long oligoribonucleotide with 2-cyanoethoxymethyl (CEM) as the 2′-O-protecting group: structural identification and biological activity of a synthetic 110mer precursor-microRNA candidate. Nucleic Acids Res 35:3287–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lavergne T, Bertrand JR, Vasseur JJ, Debart F (2008) A base-labile group for 2′-OH protection of ribonucleosides: a major challenge for RNA synthesis. Chem Eur J 14:9135–9138

    Article  CAS  PubMed  Google Scholar 

  67. Cieślak J, Grajkowski A, Kauffman JS, Duff RJ, Beaucage SL (2008) The 4-(N-dichloroacetyl-N-methylamino)benzyloxymethyl group for 2′-hydroxyl protection of ribonucleosides in the solid-phase synthesis of oligoribonucleotides. J Org Chem 73:2774–2783

    Article  CAS  PubMed  Google Scholar 

  68. Gaglione M, Potenza N, Di Fabio G, Romanucci V, Mosca N, Russo A, Novellino E, Cosconati S, Messere A (2013) Tuning RNA interference by enhancing siRNA/PAZ recognition. ACS Med Chem Lett 4:75–78

    Article  CAS  PubMed  Google Scholar 

  69. Reddy KS (2008) US Patent 7,339,052 B2

    Google Scholar 

  70. Wolter A, Leuck M (2006) US Patent 0,247,431 A1

    Google Scholar 

  71. Utagawa E, Ohkubo A, Sekine M, Seio K (2007) Synthesis of branched oligonucleotides with three different Sequences using an oxidatively removable tritylthio group. J Org Chem 72:8259–8266

    Article  CAS  PubMed  Google Scholar 

  72. Leszczynska G, Pieta J, Wozniak K, Malkiewicz A (2014) Site-selected incorporation of 5-carboxymethylaminomethyl(-2-thio)uridine into RNA sequences by phosphoramidite chemistry. Org Biomol Chem 12:1052–1056

    Article  CAS  PubMed  Google Scholar 

  73. Woodward DW (1950) US Patent 2,534,331

    Google Scholar 

  74. Persson T, Kutzke U, Busch S, Held R, Hartmann RK (2001) Chemical synthesis and biological investigation of a 77-mer oligoribonucleotide with a sequence corresponding to E. coli tRNAAsp. Bioorg Med Chem 9:51–56

    Article  CAS  PubMed  Google Scholar 

  75. Lackey JG, Mitra D, Somoza MM, Cerrina F, Damha MJ (2009) Acetal levulinyl ester (ALE) groups for 2′-hydroxyl protection of ribonucleosides in the synthesis of oligoribonucleotides on glass and microarrays. J Am Chem Soc 131:8496–8502

    Article  CAS  PubMed  Google Scholar 

  76. Reddy MP, Farooqui F (1996) US Patent 5,574,146

    Google Scholar 

  77. Tsukamoto M, Nurminen EJ, Iwase T, Kataoka M, Hayakawa Y (2004) Internucleotide-linkage formation via the phosphoramidite method using a carboxylic acid as a promoter. Nucleic Acids Symp Ser 48:25–26

    Article  Google Scholar 

  78. Hayakawa Y, Iwase T, Nurminen EJ, Tsukamoto M, Kataoka M (2005) Carboxylic acids as promoters for internucleotide-bond formation via condensation of a nucleoside phosphoramidite and a nucleoside: relationship between the acidity and the activity of the promoter. Tetrahedron 61:2203–2209

    Article  CAS  Google Scholar 

  79. Brill WKD, Nielsen J, Caruthers MH (1991) Synthesis of deoxydinucleoside phosphorodithioates. J Am Chem Soc 113:3972–3980

    Article  CAS  Google Scholar 

  80. Hayakawa Y, Kataoka M, Noyori R (1996) Benzimidazolium triflate as an efficient promoter for nucleotide synthesis via the phosphoramidite method. J Org Chem 61:7996–7997

    Article  CAS  PubMed  Google Scholar 

  81. Hayakawa Y, Kawai R, Hirata A, Sugimoto J-i, Kataoka M, Sakakura A, Hirose M, Noyori R (2001) Acid/azole complexes as highly effective promoters in the synthesis of DNA and RNA oligomers via the phosphoramidite method. J Am Chem Soc 123:8165–8176

    Article  CAS  PubMed  Google Scholar 

  82. Nurminen E, Lönnberg H (2004) Mechanisms of the substitution reactions of phosphoramidites and their congeners. J Phys Org Chem 17:1–17

    Google Scholar 

  83. Sinha ND, Zedalis WE, Miranda GK (2003) WO Patent 004,512 A1

    Google Scholar 

  84. Sinha ND, Foster P, Kuchimanchi SN, Miranda G, Shaikh S, Michaud D (2007) Highly effective non-explosive activators based on saccharin for the synthesis of oligonucleotides and phosphoramidites. Nucleosides Nucleotides Nucleic Acids 26:1615–1618

    Google Scholar 

  85. Russell MA, Laws AP, Atherton JH, Page MI (2008) The mechanism of the phosphoramidite synthesis of polynucleotides. Org Biomol Chem 6:3270–3275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaki Tsukamoto or Yoshihiro Hayakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsukamoto, M., Hayakawa, Y. (2018). Various Coupling Agents in the Phosphoramidite Method for Oligonucleotide Synthesis. In: Obika, S., Sekine, M. (eds) Synthesis of Therapeutic Oligonucleotides. Springer, Singapore. https://doi.org/10.1007/978-981-13-1912-9_2

Download citation

Publish with us

Policies and ethics