Skip to main content

Functionality and Properties of Bio-based Materials

  • Chapter
  • First Online:

Abstract

This chapter reviews the impact of recent developments in bio-based sustainable materials with enhanced functionality and its properties related to moisture permeability, porosity and tunable gas permeability characteristics on storing and packing wet and dry foods and fresh produce. Bio-based polymers, plastics, biodegradable plastics and composites are gaining interest as reasonable substitutes for non-renewable petrochemical-based products. Natural fibres such as jute, hemp, flax, banana, wheat straw, etc. are significant sources for making biodegradable composites having commercial importance as food packaging materials. Combining plant-based fibrous materials and biopolymers/biomass-derived polymers gives environmentally friendly and biodegradable biocomposites with sufficient flexibility and mechanical strength comparable to petroleum-based polymers. Improved mechanical resistance, thermal insulation and enhanced physico-chemical properties which are key to the barrier and permeability features in bio-based packaging materials are achieved. Protein-based materials, which demonstrate good barrier properties, being impermeable to oxygen (in the absence of moisture) and aromatic compounds, have also been investigated as potential food packaging materials. This chapter presents a review of the literature available on such processes, techniques and methods applied to exploit these sustainable bio-based materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Basak S, Samanta KK, Chattopadhyay SK et al (2016) Green fire retardant finishing and combined dyeing of proteinous wool fabric. Color Technol 132:135–143. https://doi.org/10.1111/cote.12200

    Article  CAS  Google Scholar 

  • Baumann MGD, Lorenz LF, Batterman SA, Guo-Zheng Z (2000) Aldehyde emissions from particleboard and medium density fiberboard products. For Prod J 50:75

    CAS  Google Scholar 

  • Blackburn R (2009) Sustainable textiles: life cycle and environmental impact. Elsevier, Woodhead Publishing, and CRC Press, Cambridge, UK

    Google Scholar 

  • Chen M-J, Shi Q-S (2015) Transforming sugarcane bagasse into bioplastics via homogeneous modification with phthalic anhydride in ionic liquid. ACS Sustain Chem Eng 3:2510–2515

    Article  CAS  Google Scholar 

  • Choudhury AKR (2018) Biopolymers in textile industry. In: Padinjakkara A, Thankappan A, Souza FG, Thomas S (eds) Biopolymers and biomaterials. Apple Academic Press, Toronto

    Google Scholar 

  • Coltelli M-B, Wild F, Bugnicourt E et al (2015) State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: an extensive review. Coatings 6:1

    Article  CAS  Google Scholar 

  • Douka A, Vouyiouka S, Papaspyridi L-M, Papaspyrides CD (2017) A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 79:1–25

    Article  CAS  Google Scholar 

  • Fan Y, Nishida H, Shirai Y et al (2004) Thermal degradation behaviour of poly (lactic acid) stereocomplex. Polym Degrad Stab 86:197–208

    Article  CAS  Google Scholar 

  • Fischer S, Vlieger de J Kock T, Gilberts J, et al (2000) Green composites—the materials of the future—a combination of natural polymers and inorganic particles. In: Proceedings of the Food Biopack Conference, p 29

    Google Scholar 

  • Fortea-Verdejo M, Bumbaris E, Burgstaller C, Bismarck A, Lee KY (2017) Plant fibre-reinforced polymers: where do we stand in terms of tensile properties? Int Mater Rev 62(8):441–464

    Article  CAS  Google Scholar 

  • Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642

    Article  CAS  Google Scholar 

  • Gade R, Tulasi MS, Bhai VA (2013) Seaweeds: a novel biomaterial. Int J Pharm Pharm Sci 5:975–1491

    Google Scholar 

  • Guerrero P, Leceta I, Peñalba M, De La Caba K (2014) Optical and mechanical properties of thin films based on proteins. Mater Lett 124:286–288

    Article  CAS  Google Scholar 

  • Huggins T, Wang H, Kearns J et al (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119

    Article  CAS  PubMed  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly (lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  • Johanson J, Vahlne J-E (1977) The internationalization process of the firm-a model of knowledge development and increasing foreign market commitments. J Int Bus Stud 8:23–32

    Article  Google Scholar 

  • Kirpluks M, Cabulis U, Avots A (2016) Flammability of bio-based rigid polyurethane foam as sustainable thermal insulation material. In insulation materials in context of sustainability. InTech

    Google Scholar 

  • Koch K, Gillgren T, Stading M, Andersson R (2010) Mechanical and structural properties of solution-cast high-amylose maize starch films. Int J Biol Macromol 46:13–19

    Article  CAS  PubMed  Google Scholar 

  • Koizumi T, Tsujiuchi N, Adachi A (2002) The development of sound absorbing materials using natural bamboo fibers. WIT Transactions on The Built Environment 59

    Google Scholar 

  • Kumar R, Wang L, Zhang L (2009) Structure and mechanical properties of soy protein materials plasticized by thiodiglycol. J Appl Polym Sci 111:970–977

    Article  CAS  Google Scholar 

  • Marella JBR, Madireddy S Maripi AN (n.d.) Production of pulp from banana pseudo stem for grease proof paper. Table Content Top Page no 61

    Google Scholar 

  • Maskell D, da Silva CF, Mower K, et al (2015) Properties of bio-based insulation materials and their potential impact on indoor air quality

    Google Scholar 

  • Meena R, Lehnen R, Schmitt U, Saake B (2011) Effect of oat spelt and beech xylan on the gelling properties of kappa-carrageenan hydrogels. Carbohydr Polym 85:529–540

    Article  CAS  Google Scholar 

  • Mekonnen T, Misra M, Mohanty AK (2016) Fermented soymeals and their reactive blends with poly (butylene adipate-co-terephthalate) in engineering biodegradable cast films for sustainable packaging. ACS Sustain Chem Eng 4:782–793

    Article  CAS  Google Scholar 

  • Mittal N, Jansson R, Widhe M et al (2017) Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11:5148–5159

    Article  CAS  PubMed  Google Scholar 

  • Monteiro SN, Lopes FPD, Barbosa AP et al (2011) Natural lignocellulosic fibers as engineering materials—an overview. Metall Mater Trans A 42:2963

    Article  CAS  Google Scholar 

  • Muneer F (2013) Evaluation of the sustainability of hemp fiber reinforced wheat gluten plastics

    Google Scholar 

  • Nan N, De-Vallance D (2014) Bio-based carbon/polyvinyl alcohol composite materials. In: Poster present. 2014 Bioelectron. Biosensing International Symposium. Morgantown, WV, April. p 28

    Google Scholar 

  • Pandey R, Patel S, Pandit P, Nachimuthu S, Jose S (2018) Colouration of textiles using roasted peanut skin-an agro processing residue. J Clean Prod 172:1319–1326

    Article  CAS  Google Scholar 

  • Petersen K, Nielsen PV (2000) Potential biologically based food packaging: a Danish study. Food Biopack Conference Copenhagen (Denmark), 27–29 Aug 2000

    Google Scholar 

  • Petersen K, Nielsen PV, Bertelsen G et al (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68

    Article  CAS  Google Scholar 

  • Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate. Starch-Stärke 53:356–361

    Article  CAS  Google Scholar 

  • Raafat D, Sahl H (2009) Chitosan and its antimicrobial potential–a critical literature survey. Microb Biotechnol 2:186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razzaq HAA, Pezzuto M, Santagata G et al (2016) Barley β-glucan-protein based bioplastic film with enhanced physicochemical properties for packaging. Food Hydrocoll 58:276–283

    Article  CAS  Google Scholar 

  • Sanyang ML, Sapuan SM, Jawaid M et al (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sust Energ Rev 54:533–549

    Article  CAS  Google Scholar 

  • Souza AC, Benze R, Ferrão ES et al (2012) Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT Food Sci Technol 46:110–117

    Article  CAS  Google Scholar 

  • Storz H, Vorlop K-D (2013) Bio-based plastics: status, challenges and trends. Appl Agric For Res 63:321–332

    Google Scholar 

  • Su J-F, Huang Z, Zhao Y-H et al (2010) Moisture sorption and water vapor permeability of soy protein isolate/poly (vinyl alcohol)/glycerol blend films. Ind Crop Prod 31:266–276

    Article  CAS  Google Scholar 

  • Sullins T, Pillay S, Komus A, Ning H (2017) Hemp fiber reinforced polypropylene composites: the effects of material treatments. Compos Part B Eng 114:15–22

    Article  CAS  Google Scholar 

  • Takasaki M, Ito H, Kikutani T (2003) Development of stereocomplex crystal of polylactide in high-speed melt spinning and subsequent drawing and annealing processes. J Macromol Sci Part B 42:403–420

    Article  CAS  Google Scholar 

  • Tănase EE, Popa ME, Râpă M, Popa O (2015) Preparation and characterization of biopolymer blends based on polyvinyl alcohol and starch. Rom Biotechnol Lett 20:10307

    Google Scholar 

  • Tanrattanakul V, Bunkaew P (2014) Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly (lactic acid) and natural rubber. Express Polym Lett 8:387–396

    Article  CAS  Google Scholar 

  • Teli MD, Pandit P (2017a) Novel method of ecofriendly single bath dyeing and functional finishing of wool protein with coconut shell extract biomolecules. ACS Sustain Chem Eng 5(9):8323–8333

    Article  CAS  Google Scholar 

  • Teli MD, Pandit P (2017b) Multifunctionalised silk using Delonix regia stem shell waste. Fibers Polym 18:1679–1690

    Article  CAS  Google Scholar 

  • Teli MD, Pandit P (2017c) A novel natural source Sterculia foetida fruit shell waste as colorant and ultraviolet protection for inen. J Nat Fibers 15(3):337–343

    Article  CAS  Google Scholar 

  • Teli MD, Pandit P (2018) Development of thermally stable and hygienic colored cotton fabric made by treatment with natural coconut shell extract. J Ind Text, 1528083717725113 48(1):87–118

    Article  CAS  Google Scholar 

  • Teli MD, Pandit P, Basak S (2017a) Coconut shell extract imparting multifunction properties to ligno-cellulosic material. J Ind Text, 1528083716686937 47(6):1261–1290

    Article  CAS  Google Scholar 

  • Teli MD, Sahoo MR, Pandit P (2017b) Antibacterial and UV-protective cotton fabric made by herbal synthesized silver nanoparticles, 04, 1310–1321

    Google Scholar 

  • Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly (lactic acid) s. XI. Mechanical properties and morphology of solution-cast films. Polymer (Guildf) 40:6699–6708

    Article  CAS  Google Scholar 

  • Türe H, Gällstedt M, Hedenqvist MS (2012) Antimicrobial compression-moulded wheat gluten films containing potassium sorbate. Food Res Int 45:109–115

    Article  CAS  Google Scholar 

  • Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263

    Article  CAS  Google Scholar 

  • Weber CJ, Haugaard V, Festersen R, Bertelsen G (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19:172–177

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites–a review. Compos Part B Eng 56:296–317

    Article  CAS  Google Scholar 

  • Zhu X, Kim B-J, Wang Q, Wu Q (2013) Recent advances in the sound insulation properties of bio-based materials. Bioresources 9:1764–1786

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, P., Nadathur, G.T., Maiti, S., Regubalan, B. (2018). Functionality and Properties of Bio-based Materials. In: Ahmed, S. (eds) Bio-based Materials for Food Packaging. Springer, Singapore. https://doi.org/10.1007/978-981-13-1909-9_4

Download citation

Publish with us

Policies and ethics