Skip to main content

Australian System for Reporting Thyroid Cytology

  • Chapter
  • First Online:
Thyroid FNA Cytology

Abstract

Standardised Reporting of Thyroid Cytology in Australasia: Structured Pathology Protocol of Royal College of Pathologists of Australasia (RCPA) and Australian Society of Cytology (ASC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Royal College of Pathologists of Australasia (RCPA). RCPA Cancer. Protocols: Thyroid cytology structured reporting protocol (1st edition). 2014. http://www.rcpa.edu.au/Library/Practising-Pathology/Structured-Pathology-Reporting-of-Cancer/Cancer-Protocols. Accessed 9 Mar 2015.

  2. Tan H, Gharib H, Reading CC. Solitary thyroid nodule. Comparison between palpation and ultrasonography. Arch Intern Med. 1995;155:2418–23.

    Article  CAS  PubMed  Google Scholar 

  3. Mackenzie EJ, Mortimer RH. Thyroid nodules and thyroid cancer. Med J Aust. 2004;180(5):242–7.

    Article  PubMed  Google Scholar 

  4. Australian Institute of Health and Welfare (AIHW). Australian Cancer Incidence and Mortality (ACIM) books. 2012. http://www.aihw.gov.au/acim-books/. Accessed 3 Dec 2012.

  5. Orell SR, Philips J. Broadsheet number 57: problems in fine needle biopsy of the thyroid. Pathology. 2000;32(3):191–8.

    Article  CAS  PubMed  Google Scholar 

  6. En NM, Kumarasinghe MP, Tie B, Sterrett GF, Wood B, Walsh J, Nguyen H, Whyte A, Frost F. Experience with standardized thyroid fine-needle aspiration reporting categories. Cancer Cytopathology. 2010;118(6):423–33.

    Article  Google Scholar 

  7. Tsan CJ, Serpell JW, Poh YY. The impact of synoptic cytology reporting on fine-needle aspiration cytology of thyroid nodules. ANZ J Surg. 2007;77(11):991–5.

    Article  PubMed  Google Scholar 

  8. Ali S, Cibas ES, editors. The Bethesda system for reporting thyroid cytopathology. Definitions, criteria and explanatory notes. 1st edition. New York: Springer; 2010.

    Google Scholar 

  9. The Papanicolaou Society of Cytopathology Task Force on Standards for Practice. Guidelines of the Papanicolaou Society of Cytopathology for fine needle aspiration procedure and reporting. Diagn Cytopathol. 1997;17:239–47.

    Article  Google Scholar 

  10. British Thyroid Association Royal College of Physicians. Guidelines for the management of thyroid cancer 2nd edition. In: Perros P, editor. Report of the Thyroid Cancer Guidelines Update Group. London: Royal College of Physicians; 2007.

    Google Scholar 

  11. Royal College of Pathologists of Australasia (RCPA). Guidelines for authors of structured cancer pathology reporting protocols. Surry Hills, NSW: RCPA; 2009.

    Google Scholar 

  12. Kumarasinghe MP, Cummings MC, Raymond W, et al. Approach to thyroid cytology: rationale for standardisation. Pathology. 2015;47(4):285–8.

    Article  CAS  PubMed  Google Scholar 

  13. Saleh H, Bassily N, Hammoud MJ. Utility of a liquid-based, monolayer preparation in the evaluation of thyroid lesions by fine needle aspiration biopsy: comparison with the conventional smear method. Acta Cytol. 2009;53(2):130–6.

    Article  PubMed  Google Scholar 

  14. Fischer AH, Clayton AC, Bentz JS, Wasserman PG, Henry MR, Souers RJ, Moriarty AT. Performance differences between conventional smears and liquid-based preparations of thyroid fine-needle aspiration samples: analysis of 47,076 responses in the College of American Pathologists Interlaboratory Comparison Program in Non-Gynecologic Cytology. Arch Pathol Lab Med. 2013;137(1):26–31.

    Article  PubMed  Google Scholar 

  15. Kumarasinghe MP, Sheriffdeen AH. Fine needle sampling without aspiration. Pathology. 1995;27:330–2.

    Article  CAS  PubMed  Google Scholar 

  16. http://www.mps.com.au/media/3362095/i016_australian_modified_structured_reporting_for_thyroid_cytology_final_web_21_4_2016.pdf.

  17. Judkins AR, Roberts SA, LiVolsi VA. Utility of immunohistochemistry in the evaluation of necrotic thyroid tumours. Hum Pathol. 1999;30:1373–6.

    Article  CAS  PubMed  Google Scholar 

  18. Chai SM, Kumarasinghe MP. Diagnosis of necrotic and degenerate thyroid lesions: value of Immunohistochemistry. Histopathology. 2011;59:496–503.

    Article  PubMed  Google Scholar 

  19. Choi KU, Kim JY, Park DY, et al. Recommendations for the management of cystic thyroid nodules. ANZ J Surg. 2005;75(7):537–41.

    Article  PubMed  Google Scholar 

  20. Xu B, Thong N, Tan D, Khoury T. Expression of thyroid transcription factor-1 in colorectal carcinoma. Appl Immunohistochem Mol Morphol. 2010;18(3):244–9.

    Article  CAS  PubMed  Google Scholar 

  21. Robens J, Goldstein L, Gown AM, Schnitt SJ. Thyroid transcription factor-1 expression in breast carcinomas. Am J Surg Pathol. 2010;34(12):1881–5.

    Article  PubMed  Google Scholar 

  22. Leite KR, Mitteldorf CA, Srougi M, Dall'oglio MF, Antunes AA, Pontes J Jr, Camara-Lopes LH. Cdx2, cytokeratin 20, thyroid transcription factor 1, and prostate-specific antigen expression in unusual subtypes of prostate cancer. Ann Diagn Pathol. 2008;12(4):260–6.

    Article  PubMed  Google Scholar 

  23. Nonaka D, Tang Y, Chiriboga L, Rivera M, Ghossein R. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol. 2008;21(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  24. Enriquez ML, Baloch ZW, Montone KT, Zhang PJ, LiVolsi VA. CDX2 expression in columnar cell variant of papillary thyroid carcinoma. Am J Clin Pathol. 2012;137(5):722–6.

    Article  PubMed  Google Scholar 

  25. Schmitt AC, Cohen C, Siddiqui MT. Paired box gene 8, HBME-1, and Cytokeratin 19 expression in preoperative fine-needle aspiration of papillary thyroid carcinoma. Cancer Cytopathol. 2010;118(4):196–202.

    Article  CAS  PubMed  Google Scholar 

  26. Nga ME, Lim GS, Soh CH, Kumarasinghe MP. HBME-1 and CK19 are highly discriminatory in the cytological diagnosis of papillary thyroid carcinoma. Diagn Cytopathol. 2008;36(8):550–6.

    Article  PubMed  Google Scholar 

  27. Cui W, Sang W, Zheng S, Ma Y, Liu X, Zhang W. Usefulness of cytokeratin-19, galectin-3, and Hector Battifora mesothelial-1 in the diagnosis of benign and malignant thyroid nodules. Clin Lab. 2012;58(7–8):673–80.

    PubMed  Google Scholar 

  28. Forrest CH, Frost FA, Bastiaan de Boer W. Medullary carcinoma of the thyroid accuracy of diagnosis by fine-needle aspiration cytology. Cancer Cytopathol. 1998;84(5):295–302.

    Article  CAS  Google Scholar 

  29. Leslie C, Grieu-Iacopetta F, Richter A, et al. BRAF p.Val600Glu (V600E) mutation detection in thyroid fine needle aspiration cell block samples: a feasibility study. Pathology. 2015;47:432–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kang G, Cho EY, Shin JH, Chung JH, Kim JW, Oh YL. Role of BRAFV600E mutation analysis and second cytologic review of fine needle aspiration for evaluating thyroid nodule. Cancer Cytopathol. 2012;120:44–51.

    Article  CAS  PubMed  Google Scholar 

  31. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, Rosai J, Steward DL, Walsh PS, Wilde JI, Zeiger MA, Lanman RB, Haugen BR. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. New Engl J Med. 2012;367(8):705–15.

    Article  CAS  PubMed  Google Scholar 

  32. Giovanella L, Ceriani L, Suriano S. Lymph node thyroglobulin measurement in diagnosis of neck metastases of differentiated thyroid carcinoma. J Thyroid Res. 2011;2011:621839. https://doi.org/10.4061/2011/621839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baloch ZW, Barroeta JE, Walsh J, Gupta PK, Livolsi VA, Langer JE, et al. Utility of Thyroglobulin measurement in fine-needle aspiration biopsy specimens of lymph nodes in the diagnosis of recurrent thyroid carcinoma. Cytojournal. 2008;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mayo Clinic. Online Test Catalog. 2014. www.mayomedicallaboratories.com/test-catalog. Accessed 8 Aug 2014.

  35. World Health Organization (WHO). In: Lloyd RV, Osamura R, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs (4th edition). Lyon: IARC Press; 2017.

    Google Scholar 

  36. Seethala RR, Baloch ZW, Barletta JA. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod Pathol. 2018;31:39–55.

    Article  CAS  PubMed  Google Scholar 

  37. Strickland KC, Howitt BE, Marqusee E, et al. The impact of noninvasive follicular variant of papillary thyroid carcinoma on rates of malignancy for fine-needle aspiration diagnostic categories. Thyroid. 2015;25(9):987–92.

    Article  PubMed  Google Scholar 

  38. Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.

    Article  CAS  PubMed  Google Scholar 

  39. Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Agrawal N, Akbani R, Arman Aksoy B. Integrated genomic characterization of papillary thyroid. Carcinoma Cell. 2014;159(3):676–90.

    Google Scholar 

  41. Sarkis LM, Norlen O, Aniss A. The Australian experience with the Bethesda classification system for thyroid fine needle aspiration biopsies. Pathology. 2014;46(7):592–5.

    Article  CAS  PubMed  Google Scholar 

  42. Clinical significance of Malignant and Suspicious categories in thyroid FNA cytology. Predictive value analysis during 2004–2013 from a single laboratory. Australasian division of the International Academy of pathology. Poster presentation IAP-Australasian division 2016.

    Google Scholar 

  43. Shi Q, Ibrahim A, Herbert K. Detection of BRAF mutations on direct smears of thyroid fine-needle aspirates through cell transfer technique. Am J Clin Pathol. 2015;143:500–4.

    Article  PubMed  Google Scholar 

  44. Kakudo K, Higuchi M, Hirokawa M, et al. Thyroid FNA cytology in Asian practice—active surveillance for an indeterminate thyroid nodule reduces overtreatment of thyroid carcinomas. Cytopathology. 2017;28(6):455–66.

    Article  CAS  PubMed  Google Scholar 

  45. Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–131.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Park HJ, Moon JH, Yom CK, et al. Thyroid “Atypia of undetermined significance” with nuclear atypia has high rates of malignancy and BRAF mutation. Cytopathology. 2014;122:512–20.

    Article  CAS  Google Scholar 

  47. Takada N, Hirokawa M, Suzuki A, et al. Reappraisal of “cyst fluid only” on thyroid fine-needle aspiration cytology. Endocr J. 2017;64(8):759–65.

    Article  PubMed  Google Scholar 

  48. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signalling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    CAS  PubMed  Google Scholar 

  49. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  50. Ohori NP, Singhal R, Nikiforova MN, Yip L, Schoedel KE, Coyne C, McCoy KL, LeBeau SO, Hodak SP, Carty SE, Nikiforov YE. BRAF mutation detection in indeterminate thyroid cytology specimens: underlying cytologic, molecular, and pathologic characteristics of papillary thyroid carcinoma. Cancer Cytopathol. 2013;121(4):197–205.

    Article  CAS  PubMed  Google Scholar 

  51. Smith AL, Williams MD, Stewart J, et al. Utility of the BRAF p.V600E immunoperoxidase stain in FNA direct smears and cell block preparations from patients with thyroid carcinoma. Cancer Cytopathol. 2018;126(6):406–13. https://doi.org/10.1002/cncy.21992.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanthi Kumarasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumarasinghe, P. (2019). Australian System for Reporting Thyroid Cytology. In: Kakudo, K. (eds) Thyroid FNA Cytology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1897-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1897-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1896-2

  • Online ISBN: 978-981-13-1897-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics