Skip to main content

Optimal Band Selection Using Generalized Covering-Based Rough Sets on Hyperspectral Remote Sensing Big Data

  • Conference paper
  • First Online:
Advances in Big Data and Cloud Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 750))

Abstract

Hyperspectral remote sensing has been gaining attention from the past few decades. Due to the diverse and high dimensionality nature of the remote sensing data, it is called as remote sensing Big Data. Hyperspectral images have high dimensionality due to number of spectral bands and pixels having continuous spectrum. These images provide us with more details than other images but still, it suffers from ‘curse of dimensionality’. Band selection is the conventional method to reduce the dimensionality and remove the redundant bands. Many methods have been developed in the past years to find the optimal set of bands. Generalized covering-based rough set is an extended method of rough sets in which indiscernibility relations of rough sets are replaced by coverings. Recently, this method is used for attribute reduction in pattern recognition and data mining. In this paper, we will discuss the implementation of covering-based rough sets for optimal band selection of hyperspectral images and compare these results with the existing methods like PCA, SVD and rough sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L’heureux, A., et al.: Machine learning with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017)

    Google Scholar 

  2. Patra, S., Bruzzone, L.: A rough set based band selection technique for the analysis of hyperspectral images. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2015)

    Google Scholar 

  3. Maji, P., Paul, S.: Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int. J. Approx. Reason. (2010) (Elsevier)

    Google Scholar 

  4. Jensen, K., Shen, Q.: Semantics-preserving dimentionality reduction: rough and fuzzy rough based approches. IEEE Trans. Knowl. Data Eng. 16, 1457–1471 (2004)

    Article  Google Scholar 

  5. Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surveying Land Inf. Syst. 62(2), 115–000 (2002)

    Google Scholar 

  6. Guo, B., et al.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3(4), 522–526 (2006)

    Article  Google Scholar 

  7. Lavanya, A., Sanjeevi, S.: An improved band selection technique for hyperspectral data using factor analysis. J. Indian Soc. Remote Sens. 41(2), 199–211 (2013)

    Article  Google Scholar 

  8. Nahr, S., Talebi, P., et al.: Different optimal band selection of hyperspectral images using a continuous genetic algorithm. In: ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W3, pp. 249–253 (2014)

    Google Scholar 

  9. Shi, H., Shen, Y., Liu, Z.: Hyperspectral bands reduction based on rough sets and fuzzy C-means clustering. IEEE Instrumentation and Measurement and Technology Conference 2, 1053–1056 (2003)

    Google Scholar 

  10. Zakowski, W.: Approximations in the space (u, \(\pi \)). Demonstratio Math. 16, 761–769 (1983)

    Google Scholar 

  11. Kotsiantis, S., Kanellopoulos, D.: Discretization techniques: a recent survey. GESTS Int. Trans. Comput. Sci. Eng. 32(1), 47–58 (2006)

    Google Scholar 

  12. Wang, C., Shao, M., et al.: An improved attribute reduction scheme with covering based rough sets. Appl. Soft Comput. (2014) (Elsevier)

    Google Scholar 

  13. https://americaview.org/program-areas/research/accuracy-assessment-resources/indian-pine/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harika Kelam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kelam, H., Venkatesan, M. (2019). Optimal Band Selection Using Generalized Covering-Based Rough Sets on Hyperspectral Remote Sensing Big Data. In: Peter, J., Alavi, A., Javadi, B. (eds) Advances in Big Data and Cloud Computing. Advances in Intelligent Systems and Computing, vol 750. Springer, Singapore. https://doi.org/10.1007/978-981-13-1882-5_24

Download citation

Publish with us

Policies and ethics