Skip to main content

Big Data-Based Image Retrieval Model Using Shape Adaptive Discreet Curvelet Transformation

  • Conference paper
  • First Online:
Advances in Big Data and Cloud Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 750))

Abstract

Digital India program will help in agriculture field in various ways, including a weather forecast to agriculture consultation. To find all the causing symptoms of diseased leaf, the knowledge-based Android app is proposed to refer the disease of a leaf. The user can directly capture the disease leaf image from their smartphone and upload that image into the app, and they will get all the causes and symptoms of a particular disease. Moreover, users can get information in the form of text and audio in their proffered language. This system will accept the query based on images and text format which is very useful to the farmers. In this proposed work, texture-based feature extraction using Shape Adaptive Discreet Curvelet Transform (SADCT) is developed using big data computing framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajkumar, K., Sudheer, D.: A review of visual information retrieval on massive image data using hadoop. Int. J. Control Theor. Appl. 9, 425–430 (2016)

    Google Scholar 

  2. Bravo, C., Moshou, D., West, J., McCartney, A., Ramon, H.: Early disease detection in wheat fields using spectral reflectance. Biosyst. Eng. 84(2), 137–145 (2003)

    Google Scholar 

  3. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Recognition of images in large databases using color and texture. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026–1028 (2002)

    Article  Google Scholar 

  4. Miller, S.A., Beed, F.D., Harmon, C.L.: Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009)

    Google Scholar 

  5. Klatt, B., Kleinhenz, B., Kuhn, C., Bauckhage, C., Neumann, M., Kersting, K., Oerke, E.C., Hallau, L., Mahlein, A.K., Steiner-Stenzel, U., Röhrig, M.: SmartDDS-Plant disease setection via smartphone. EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation”, Turin, Italy, 24–27 June (2013)

    Google Scholar 

  6. Prince, G., Clarkson, J.P., Rajpoot, N.M.: Automatic detection of diseased tomato plants using thermal and stereo visible light images. PloS One, 10(4), e0123262 (2015)

    Google Scholar 

  7. Majumdar, J., Naraseeyappa, S., Ankalaki, S.: Analysis of agriculture data using data mining techniques: application of big data. J. Big Data, Springer (2017)

    Google Scholar 

  8. Rouached, H., Rhee, S.Y.: System-level understanding of plant mineral nutrition in the big data era. Curr. Opin. Syst. Biol. 4, 71–77 (2017)

    Article  Google Scholar 

  9. Xie, H., He, Y., Xie, X.: Exploring the factors influencing ecological land change for China’s Beijinge-Tianjine-Hebei Region using big data. J. Cleaner Prod. 142, 677e687 (2017)

    Google Scholar 

  10. Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X.: A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37 (2017)

    Google Scholar 

  11. Manjunath, B.S.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  12. Iakovidis, D.K., Pelekis, N., Kotsifakos, E.E., Kopanakis, I., Karanikas, H., Theodoridis, Y.: A pattern similarity scheme for medical image retrieval. IEEE Trans. Inf. Technol. Biomed. 13(4), 442–450 (2009)

    Article  Google Scholar 

  13. Rajakumar, K., Revathi, S.: An efficient face recognition system using curvelet with PCA. ARPN J. Eng. Appl. Sci. 10, 4915–4920 (2015)

    Google Scholar 

  14. Rajakumar, K., Muttan, S.: Texture-based MRI image retrieval using curvelet with statistical similarity matching. Int. J. Comput. Sci. Issues 10, 483–487 (2013)

    Google Scholar 

  15. Manipoonchelvi, P., Muneeswaran, K.: Significant region-based image retrieval using curvelet transform. In: IEEE Conference Publications, pp. 291–294 (2011)

    Google Scholar 

  16. Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans. Image Process. 21(4), 1613–1623 (2012)

    Article  MathSciNet  Google Scholar 

  17. Rajakumar, K., Muttan, S.: MRI image retrieval using wavelet with mahalanobis distance measurement. J. Electr. Eng. Technol. 8, 1188–1193 (2013)

    Google Scholar 

  18. Zhang, L., Wang, L., Lin, W.: Generalized biased discriminant analysis for content-based image retrieval systems. IEEE Trans. Man Cybern. Part B Cybern. 42(1), 282–290 (2012)

    Google Scholar 

  19. Zajić, G., Kojić, N., Reljin, B.: Searching image database based on content. In: IEEE Conference Publications, pp. 1203–1206 (2011)

    Google Scholar 

  20. Akakin, H.Ç., Gürcan, M.N.: Content-based microscopic image retrieval system for multi-image queries. IEEE Trans. Inf. Technol. Biomed. 16(4), 758–769 (2012)

    Article  Google Scholar 

  21. Li, Y., Gong, H., Feng, D., Zhang, Y.: An adaptive method of speckle reduction and feature enhancement for SAR images based on curvelet transform and particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 49(8), 3105–3116 (2011)

    Article  Google Scholar 

  22. Liu, S., Cai, W., Wen, L., Eberl, S., Fulham, M.J., Feng, D.: Localized functional neuroimaging retrieval using 3D discrete curvelet transform. In: IEEE Conference Publications, pp. 1877–1880 (2011)

    Google Scholar 

  23. Minakshi, Banerjee, Sanghamitra, Yopadhyay, Sankar, K.P.: Rough Sets and Intelligent Systems, vol. 2, Springer link, pp. 391–395

    Google Scholar 

  24. Prasad, B.G., Krishna, A.N.: Statistical texture feature-based retrieval and performance evaluation of CT brain images. In: IEEE Conference Publications, pp. 289–293 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Santhana Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santhana Krishnan, J., SivaKumar, P. (2019). Big Data-Based Image Retrieval Model Using Shape Adaptive Discreet Curvelet Transformation. In: Peter, J., Alavi, A., Javadi, B. (eds) Advances in Big Data and Cloud Computing. Advances in Intelligent Systems and Computing, vol 750. Springer, Singapore. https://doi.org/10.1007/978-981-13-1882-5_20

Download citation

Publish with us

Policies and ethics