Skip to main content

Carbon Dynamics in Soil-Plant-Environment System on Climate Change Perspective: Special Reference to Rice

  • Chapter
  • First Online:
Advances in Crop Environment Interaction

Abstract

Carbon is the backbone of life. It is present in the atmosphere, oceans, soils and earth’s crust and basically divided into five pools. In this chapter, we have tried to find a link of carbon dynamics in soil-plant-environment system and climate change by keeping in mind the major food crop of India, rice. Climate changes have direct as well as indirect influence on dynamics of soil organic carbon (SOC) and its degradation kinetics that contribute to global warming. In future climatic scenario, there is an opportunity to increase carbon assimilation and carbohydrate accumulation in rice under elevated carbon dioxide (CO2) environment. Again, temperature moderates the carbohydrate allocation in plant and significantly affects the growth of crop. Moreover, under changing climatic scenario, methane emission may become an important driver because of higher belowground carbon allocation. Therefore, enhancing carbon sequestration, growing of rice with low carbon footprint and soil management for controlling different pools of SOC could be some of the emerging approaches which are discussed thoroughly in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemu B (2014) The role of forest and soil carbon sequestrations on climate change mitigation. J Environ Earth Sci 4(13):98–111

    Google Scholar 

  • Amonette J, Joseph S (2009) Characteristics of biochar: micro-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earth Scan, London, pp 33–52

    Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29(1):535–562

    Article  CAS  Google Scholar 

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248

    Google Scholar 

  • Bandyopadhyay KK (2012) Carbon sequestration: global and Indian scenario. In: Singh AK, Ngachan SV, Munda GC, Mohapatra KP, Choudhury BU, Das A, Rao CS, Patel DP, Rajkhowa DJ, Ramkrushna GI, Panwar AS (eds) Carbon management in agriculture for mitigating greenhouse effect. ICAR Research Complex for NEH Region, Umiam, Meghalaya, India, pp 27–42

    Google Scholar 

  • Basile-Doelsch I, Amundson R, Stone WEE, Masiello CA, Bottero JY, Colin F, Masin F, Borschneck D, Meunier JD (2005) Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Réunion. Eur J Soil Sci 56:689–703

    CAS  Google Scholar 

  • Baver LD, Gardner WH (1972) Soil physics. Wiley Eastern, New Delhi, p 498

    Google Scholar 

  • Bhattacharyya P, Neogi S, Roy KS, Dash PK, Tripathi R, Rao KS (2013) Net ecosystem CO2 exchange and carbon cycling in tropical low land flooded rice ecosystem. Nutr Cycl Agroecosyst 95:133–144

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Neogi S, Roy KS, Dash PK, Nayak AK, Mohapatra T (2014a) Tropical low land rice ecosystem is a net carbon sink. Agric Ecosyst Environ 189:127–135

    Article  Google Scholar 

  • Bhattacharyya P, Roy KS, Dash PK, Neogi S, Shahid MD, Nayak AK, Raja R, Karthikeyan S, Balachandar D, Rao KS (2014b) Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). Eur J Agron 53:28–37

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Broquen P, Lobartini JC, Candan F, Falbo G (2005) Allophane, aluminium, and organic matter accumulation across a bioclimatic sequence of volcanic ash soils of Argentina. Geoderma 129:167–177

    Article  CAS  Google Scholar 

  • Canadell JG, Pitelka LF, Ingram JSI (1996) The effects of elevated [CO2] on plant-soil carbon below-ground: a summary and synthesis. Plant Soil 187:391–400

    Article  CAS  Google Scholar 

  • Caraballo J, Earnshaw K (2014) Carbon allocation and partitioning. NREM680. EcosystEcol. http://www.ctahr.hawaii.edu/littonc/PDFs/680_Discussion CarbonAllocation.pdf

  • Chatterjee D, Datta SC, Manjaiah KM (2013) Clay carbon pools and their relationship with short-range order minerals: avenues to mitigate climate change? Curr Sci 105(10):1404–1410

    CAS  Google Scholar 

  • Curry KJ, Bennett RH, Mayer LM, Curry A, Abril M, Biesiot PM, Hulbert MH (2007) Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochim Cosmochim Acta 71:1709–1720

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:65–173

    Article  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12:154–164

    Article  Google Scholar 

  • Egli M, Nater M, Mirabella A, Raimondi S, Plötz M, Alioth L (2008) Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma 143:101–114

    Article  CAS  Google Scholar 

  • Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability-why is dead organic matter left over in the soil. Geoderma 128:167–176

    Article  Google Scholar 

  • Farrar JF, Williams ML (1991) The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ 14:819–830. https://doi.org/10.1111/j.1365-3040.1991.tb01445.x

    Article  CAS  Google Scholar 

  • Gerdemann SJ, Dahlin DC, O’Connor WK, Penner LR (2003) Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. In: Second annual conference on carbon sequestration, NETL proceedings 5–9 May, 2003. NETL, Alexandria, VA/ Pittsburgh, PA. See www.carbonsq.com/pdf/psoters/BCI2

    Chapter  Google Scholar 

  • Himes FL (1998) Nitrogen, sulfur and phosphorus and the sequestering of carbon. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC, Boca Raton, pp 315–319. https://eo.ucar.edu/kids/green/cycles6.htm

  • Houghton RA (1996) Terrestrial sources and sinks of carbon inferred from terrestrial data. Tellus B Chem Phys Meteorol 48(4):420–432

    Article  Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis, contribution of working group-I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press

    Google Scholar 

  • IPCC (2014) Climate Change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental panel on Climate Change. IPCC, Geneva, p 151

    Google Scholar 

  • Janzen HH (2006) The soil carbon dilemma: shall we hoard it or use it? Soil Biol Biochem 38:419–424

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ, Batten GD, Blanchard C, Kirkegaard JA (2013) Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol Biochem 60:77–86

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ, Passioura JB, Batten GD, Blanchard C, Kirkegaard JA (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409

    Article  CAS  Google Scholar 

  • Kumar R, Rawat KS, Singh J, Singh A, Rai A (2013) Soil aggregation dynamics and carbon sequestration. J Appl Natusci 5(1):250–267

    CAS  Google Scholar 

  • Lal R (2001) Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Chang 51:35–72

    Article  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  Google Scholar 

  • Lal R (2008a) Carbon Sequestration. Philos Trans R Soc B 363:815–830. https://doi.org/10.1098/rstb.2007.2185

    Article  CAS  Google Scholar 

  • Lal R (2008b) Sequestration of atmospheric CO2 in global carbon pools. Energy Environ Sci 1:86–100. https://doi.org/10.1039/B809492F

    Article  CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  CAS  Google Scholar 

  • Larionova AA, Yevdokimov IV, Bykhotevs SS (2007) Temperature response of soil respiration is dependent on concentration of readily decomposable C. Biogeosci 4:1073–1081

    Article  CAS  Google Scholar 

  • Lehmann J, Rondon M (2005) Bio-char soil management on highly-weathered soils in the humid tropics. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, Boca Raton

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strateg Glob Chang 11:403–427. https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Lilley JM, Bolger TP, Gifford RM (2001) Productivity of Trifolium subterraneum and Phalaris aquatic under warmer, higher CO2 conditions. New Phytol 150:371–383

    Article  Google Scholar 

  • Manjaiah KM, Kumar S, Sachdev MS, Sachdev P, Datta SC (2010) Study of clay-organic complexes. Curr Sci 98:915–921

    CAS  Google Scholar 

  • Masek O (2009) Biochar production technologies. http://www.geos.ed.ac.uk/sccs/biochar/ documents/BiocharLaunch-OMasek.pdf

  • Mayer L, Schick L, Hardy K, Wagai R, McCarthy J (2004) Organic matter content of small mesopores in sediments and soils. Geochim Cosmochim Acta 68:3863–3872

    Article  CAS  Google Scholar 

  • Mikutta R, Kleber M, Jahn R (2005) Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma 128:106–115

    Article  CAS  Google Scholar 

  • Morgan JA, LeCain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Glob Chang Biol 7:451–466

    Article  Google Scholar 

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Fernández IG, Grünhage L, Harmens H (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45(28):5064–5068

    Article  CAS  Google Scholar 

  • Murali S, Shrivastava R, Saxena M (2010) Greenhouse gas emissions from open field burning of agricultural residues in India. J Environ Sci Engg 52(4):277–284

    CAS  Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer Science & Business Media

    Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Man-agement options for reducing CO2 emissions from agricultural soils. Biogeochem 48:147–163

    Article  CAS  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stagenberger AL (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Rosenberg NJ, Izaurralde RC (2013) Storing carbon in agricultural soils: a multi purpose environmental strategy. Springer, p 118

    Google Scholar 

  • Rothman DH, Forney DC (2007) Physical model for the decay and preservation of marine organic carbon. Science 316:1325–1328

    Article  CAS  Google Scholar 

  • Roy KS, Bhattacharyya P, Neogi S, Rao KS, Adhya TK (2012) Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L). Field Crops Res 139:71–79

    Article  Google Scholar 

  • Saha R, Mishra VK (2009) Effect of organic residue management on soil hydro-physical characteristics and rice yield in eastern Himalayan region. India J Sustain Agric 33(2):161–176

    Article  Google Scholar 

  • Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317

    Article  CAS  Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren R (1993) Volcanic ash soils- genesis, properties and utilization. Dev Soil Sci 21:1–288

    Google Scholar 

  • Shukla MK, Lal R, Ebinger M (2006) Determining soil quality indicators by factor analysis. Soil Tillage Res 87(2):194–204

    Article  Google Scholar 

  • Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem Cycles 15:697–707

    Article  CAS  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Streets D, Yarber K, Woo J, Carmichael G (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cycles 17(4):1099

    Article  Google Scholar 

  • Sujatha KB, Uprety DC, Nageswara Rao D, Raghuveer Rao P, Dwivedi N (2008) Up-regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions. Plant Soil Environ 54(4):155–162

    Article  CAS  Google Scholar 

  • Theng BKG, Tate KR (1989) Interactions of clays with soil organic constituents. Clay Res 8:1–10

    Google Scholar 

  • Theng BKG, Churchman GJ, Newman RH (1986) The occurrence of interlayer clay-organic complexes in two New Zealand soils. Soil Sci 142:262–266

    Article  CAS  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Chang Biol 7:223–230

    Article  Google Scholar 

  • USDA (2000). Soil organic carbon map. US Department of Agriculture, Natural Resources, Conservation Service, Soil Survey Division, World Soil Resources, Washington, DC. Available via DIALOG. http://soil.usda.gov/use/worldsoils/mapindex/order.html

  • van Bel AJ (2003) Phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • Von Lützow M, Kögel-Knabber I, Ludwig B, Matzner E, Ekschmitt K, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith CJ (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284

    Article  CAS  Google Scholar 

  • Weihong L, Dali W (1998) Effects of elevated CO2 on growth and carbon partitioning in rice. Chin Sci Bull 43(23):1982–1986

    Article  Google Scholar 

  • Wiseman CLS, Püttmann W (2006) Interactions between mineral phases in the preservation of soil organic matter. Geoderma 134:109–118

    Article  CAS  Google Scholar 

  • Woignier T, Primera J, Hashmy A (2006) Application of the DLCA model to “natural” gels: the allophanic soils. J Sol-Gel Sci Techn 40:201–207

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the Director, NRRI & CRIJAF, ICAR-National Fellow Project (Agri. Edn. /27/08/NF/2017-HRD) and NICRA for providing support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, P. et al. (2018). Carbon Dynamics in Soil-Plant-Environment System on Climate Change Perspective: Special Reference to Rice. In: Bal, S., Mukherjee, J., Choudhury, B., Dhawan, A. (eds) Advances in Crop Environment Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-13-1861-0_1

Download citation

Publish with us

Policies and ethics