Skip to main content

Role of Filamentous Fungi to Remove Petroleum Hydrocarbons from the Environment

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons

Abstract

Excessive use of petroleum hydrocarbons is causing many problems in the ecosystem. Practically speaking, injudicious use and inappropriate discharge of all forms of hydrocarbons compounds are harmful for the ecosystem. On the other hand, hydrocarbon components like polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and their biodegradation products are known for their carcinogenic behavior. The reason of persistence of carbon-based compounds (petroleum hydrocarbons) for a long time in the ecosystem depends on many factors such as the physical factors, type of soil, type of microbes in that particular environment, water and sediment of that area, and above all the chemical nature of the petroleum hydrocarbon. The degradation rate of any hydrocarbon product depends upon the chemical nature of the compound, influence of physical factors (here temperature plays a significant role), and accessibility of hydrocarbon as carbon source for microbes, especially the extracellular enzymes secreted by the microbes. The hydrocarbon compounds released in the soil sediments are easy to degrade compared to the aquatic system; since the diversity of microbes in soil and sediment is more, therefore, released hydrocarbon compounds are easily degraded into simple and nontoxic components. Filamentous fungi are a very important biodegrader, owing to their greater biomass compared to bacterial cell. The fungi have more surface area for biosorption and enzyme secretion for efficient biodegradation of petroleum hydrocarbons. In addition to fungi, other organisms such as bacteria and algae have also been employed as an efficient hydrocarbon biodegrader. The main problem with petroleum hydrocarbon biodegradation is that owing to the recalcitrant nature of petrochemicals, the process is complicated, and it also takes a long time for mineralization. Environmental factors also determine the fate of petroleum hydrocarbons in aquatic and terrestrial ecosystem and also rely on several climatic conditions such as temperature, light, aerobic and anaerobic conditions, pH, wind, availability of nitrogen compounds, presence of humic acids, and salinity. There are several methods and approaches used all over the globe to remove or biodegrade the unwanted hydrocarbons using physical and chemical means, but these approaches are not efficient, and moreover they are not cost-effective. The use of biological means by applying potential microbes for bioremediation is an efficient, eco-friendly, and cost-effective tactic without addition of any unwanted load on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AI-Jawhari IH (2015) Ability of some fungi isolated from a sediment of Suq-Al Shuyukh marshes on biodegradation of crude oil. Int J Curr Microbiol App Sci 4:19–32

    Google Scholar 

  • AI-Jawhari IH (2016) Bioremediation of anthracene by Aspergillus niger and Penicillium funiculosum. Int Res J Bio Sci 5:1–13

    Google Scholar 

  • Alegbeleyea OO, Olutoyin BO, Jackson V (2017) Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz J Microbiol 48(2):314–325

    Article  Google Scholar 

  • Al-Nasrawi H (2012) Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J Bioremed Biodegar 3:147. https://doi.org/10.4172/2155-6199.1000147

    Article  CAS  Google Scholar 

  • Andreoni V, Gianfreda L (2010) PAH bioremediation by microbial communities and enzymatic activities. In: Anastas PT (ed) Handbook of green chemistry. Wiley, Weinheim. https://doi.org/10.1002/9783527628698.hgc033

    Chapter  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78A–87A

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, Kumar V, Bisht NS (2014a) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol 60:67–76

    Article  CAS  Google Scholar 

  • Bisht S, Kumar V, Kumar M, Sharma S (2014b) Inoculant technology in Populus deltoides rhizosphere for effective bioremediation of Polyaromatic hydrocarbons (PAHs) in contaminated soil, Northern India. Emirates J Food Agric 26(9):458–470

    Google Scholar 

  • Bobra AM, Shiu WY, Mackay D (1983) Acute toxicity of fresh and weathered crude oils to. Daphnia Magna Chemo 12:1137–1149

    CAS  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DG, Knightes CD, Catherine AP (1999) Risk assessment for polycyclic aromatic hydrocarbon NAPLs using component fractions. Environ Sci Technol 33:4357–4363

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 4706:1434–1436

    Google Scholar 

  • Capotorti G, Digianvincenzo P, Cesti P, Bernardi A, Guglielmetti G (2004) Pyrene and benzo(a)pyrene metabolism by Aspergillus terreus strain isolated from a polycyclic aromatic hydrocarbons polluted soil. Biodegradation 15:79–85

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotech 4:331–338

    Article  CAS  Google Scholar 

  • Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Brazilian J Microbiol 32:255–261

    Article  CAS  Google Scholar 

  • Curfs DM, Beckers L, Godschalk RW, Gijbels MJ, van Schooten FJ (2003) Modulation of plasma lipid levels affects benzo[a]pyrene-induced DNA damage in tissues of two hyperlipidemic mouse models. Environ Mol Mutagen 42:243–249

    Article  CAS  Google Scholar 

  • Delille D, Bassères A, Dessommes A, Rosiers C (1998) Influence of daylight on potential biodegradation of diesel and crude oil in Antarctic seawater. Mar Environ Res 45:249–258

    Article  CAS  Google Scholar 

  • El-Tarabily KA (2002) Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf. Can J Microbiol 48(2):176–182

    Article  CAS  Google Scholar 

  • Fellenberg G (1990) Chemic der Umweltbelastung. Teubner, Stuttgart 256 S, kartoniert DM 32.00, Springer

    Google Scholar 

  • Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L (2010) Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review. Environ Pollu Sci Res 10:11–30

    Google Scholar 

  • Field JA, Jong De E, Costa GF, de Bont JA (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers L, Ohnishi ST, Penning TM (1997) DNA strand scission by polycyclic aromatic hydrocarbon oquinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-Semiquinone Anion radicals. Biochemist 36(28):8640–8648

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enz Micro Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gomes RB, Nogueira R, Oliveira JM, Peixoto J, Brito AG (2009) Determination of total and available fractions of PAHs by SPME in oily wastewaters: overcoming interference from NAPL and NOM. Environ Sci Pollut Res 16:671–678

    Article  CAS  Google Scholar 

  • Grishkan I, Korol AB, Nevo E, Wasser SP (2003) Ecological stress and sex evolution in soil microfungi. Proc R Soc Lond 270:13–18

    Article  Google Scholar 

  • Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by lignolytic fungi. Environ Heal Pers 103:41–43

    CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic Biological hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Chem 261:16948–16952

    CAS  Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotech 8:268–273

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Google Scholar 

  • Hesham AEL, Alamri SA, Khan S, Mahmoud ME, Mahmoud HM (2009) Isolation and molecular genetic characterization of a yeast strain able to degrade petroleum polycyclic aromatic hydrocarbons. Afr J Biotechnol 8:2218–2223

    CAS  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants: I – a perspective view. Environ Sci Tech 13:416–423

    Article  Google Scholar 

  • Khashayar T, Mahasa T (2010) Biodegradation potential of petroleum hydrocarbons by microbial diversity in soil. World Appl Sci J 8(6):750–755

    CAS  Google Scholar 

  • Knap AH (1982) Experimental studies to determine the fate of petroleum hydrocarbons from refinery effluent on an estuarine system. Environ Sci Technol 16:1–4

    Article  CAS  Google Scholar 

  • Lichtenthaler RG, Haag WR, Mill T (1989) Photooxidation of probe compounds sensitized by crude oils in toluene and as an oil film on water. Environ Sci Technol 23:39–45

    Article  CAS  Google Scholar 

  • Mahro B, Schaefer G, Kastner M (1994) Pathways of microbial degradation of polycyclic aromatic hydrocarbons in soil. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polycyclic aromatic compounds. CRC Press, Boca Raton, pp 203–217

    Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40(4):339–346

    Article  CAS  Google Scholar 

  • McCoull KD, Rindgen D, Blair IA, Penning TM (1999) Synthesis and characterization of polycyclic aromatic hydrocarbon o- quinone depurinating N7-guanine adducts. Chem Res Toxicol 12(3):237–246

    Article  CAS  Google Scholar 

  • McFarland MJ, Qiu XJ, Sims JL, Randolph ME, Sims RC (1992) Remediation of petroleum impacted soils in fungal compost bioreactors. Wat Sci Tech 25:197–206

    Article  CAS  Google Scholar 

  • Meador JP, Stein JE, Reicher WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165

    CAS  PubMed  Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    Article  CAS  Google Scholar 

  • Meyers PA, Quinn JG (1973) Factors affecting the association of fatty acids with mineral particles in sea water. Geoch et Cosmo Acta 37:1745–1759

    Article  CAS  Google Scholar 

  • Muncnerova D, Augustin J (1994) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Bioresor Technol 48:97–106

    Article  Google Scholar 

  • Naranjo L, Urbina H, de Sisto A, Leon V (2007) Isolation of autochthonous nonwhite rot fungi with potential for enzymatic upgrading of Venezuelan extra heavy crude oil. Biocatal Biotransformation 25:341–349

    Article  CAS  Google Scholar 

  • Peng R, Xiong A, Xue Y, Fu X, Gao F, Zhao W, Tian Y, Yao Q (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS 32:927–955

    CAS  Google Scholar 

  • Peterson DR (1994) Calculating the aquatic toxicity of hydrocarbon mixtures. Chemo 29:2493–2506

    Article  CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    Article  CAS  Google Scholar 

  • Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollu 101:355–359

    Article  CAS  Google Scholar 

  • Shor LM, Kosson DS Rockne KJ, Young LY, Taghorn GL (2004) Combined effects of contaminant desorption and toxicity on risk from PAH contaminated sediments. Risk Anal 24(5):1109–1120

    Article  Google Scholar 

  • da Silva L, Barbosa JM (2009) Seaweed meal as a protein source for the white shrimp Litopenaeus vannamei. J Appl PhycoI 2:193–197

    Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonich SL, Hites RA (1994) Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943

    Article  CAS  Google Scholar 

  • Stowers SJ, Anderson MW (1985) Formation and persistence of benzo(a)pyrene metabolite DNA adducts. Environ Health Perspec 62:31–39

    Article  CAS  Google Scholar 

  • Trenk T, Sandermann H (1978) Metabolism of benzo[a]pyrene in cell suspension cultures of parsley (Petroselinum hortense, Hoffm.) and soybean (Glycine max L.). Planta 141:245–251

    Article  Google Scholar 

  • Trust BA, Muller JG, Goffin RB, Gifuentes LA (1995) Biodegradation of fluoranthrene as monitored using stable carbon isotopes. In: Hinchee RE, Douglas GS, Ong SK (eds) Monitoring and verification of bioremediation. Battelle Press, Columbus, pp 223–239

    Google Scholar 

  • Veignie E, Rafin C, Woisel P, Cazier F (2004) Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a nonwhite rot fungus Fusarium solani. Environ Pollu 129:1–4

    Article  CAS  Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DW (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chrom A 809:89–107

    Article  CAS  Google Scholar 

  • Wu Y (2010) Degradation of polycyclic aromatic hydrocarbons (PAHs) by mangrove sediment fungi. Ph.D. thesis, City University, Hong Kong

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, I.F., AI-Jawhari (2018). Role of Filamentous Fungi to Remove Petroleum Hydrocarbons from the Environment. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_23

Download citation

Publish with us

Policies and ethics