Skip to main content

Treatment of Oily Wastewater Using Hydrogels

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons
  • 1272 Accesses

Abstract

This chapter discusses the application of hydrogels in wastewater treatment. Oily wastewater is produced in large quantities from activities and processes in the petroleum industry. Moreover, the draining of these effluents pollutes the environment and diminishes the yield of oil and water. Oily wastewater is associated with important threats to air, water, soil, and humans due to the dangerous nature of its oil contents. Hydrogels have been used to treat oily wastewater by an adsorption method. This chapter discusses the monitoring and handling of water remediation in the petroleum industry using hydrogels, such as polyvinyl alcohol (PVA) crosslinked hydrogels, PVA foam, and chitosan-based polyacrylamide hydrogels. The capacity of these hydrogels to adsorb and trap crude oil was determined by gravimetric methods under the best possible conditions. The treatment of oily wastewater can be enhanced at a low cost by trapping crude oil in an open marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen Z (2005) Preparations and applications of some friendly environmental compounds. Ph.D. thesis, Ain-Shams University, Cairo

    Google Scholar 

  • Abdeen Z (2011) Swelling and reswelling characteristics of cross-linked poly (vinyl alcohol)/chitos anhydrogel film. J Dispers Sci Technol 32:1337–1344

    Article  CAS  Google Scholar 

  • Abdeen Z (2016) Adsorption efficiency of poly (ethylene glycol)/chitosan/CNT blends for maltene fraction separation. J Environ Sci Pollut Res 23:11240–11246

    Article  CAS  Google Scholar 

  • Abd El-Hady A, Abd El-Rehim HA (2004) Production of prednisolone by pseudomonas oleovorans cells incorporated into PVP/PEO radiation crosslinked hydrogels. J Biomed Biotechnol 2004(4):219–226

    Article  Google Scholar 

  • Abdeen Z, Moustafa YM (2016) Treatment of oily wastewater by using porous PVA hydrogels as oil adsorbent. J Dispers Sci Technol 37:799–805

    Article  CAS  Google Scholar 

  • Abdeen Z, Somaia GM (2014) Study of the adsorption efficiency of an eco-friendly carbohydrate polymer for contaminated aqueous solution by organophosphorus pesticide. Open J Org Polym Mater 4:16–28

    Article  Google Scholar 

  • Abdeen Z, Tahany GM, Mohammed Hanaa AE, Attia (2013) Preparation, characterization and antifungal activity of biodegradable polymer (chitosan) on some phytopathogenic fungi. J Appl Sci Res 1(1):60–71

    CAS  Google Scholar 

  • Abdeen Z, Mohammad SG, Mahmoud MS (2015) Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blendingfrom aqueous solution. Environ Nanotechnol Monitor Manag 3:1–9

    Article  Google Scholar 

  • Ahmed AF, Ahmad J, Basma Y, Ramzi T (2007) Assessment of alternative management techniques of tank bottom petroleum sludge in Oman. J Hazard Mater 141:557–564

    Article  Google Scholar 

  • Aly RO (2017) Implementation of chitosan inductively modified by γ-rays copolymerization with acrylamide in the decontamination of aqueous basic dye solution. Arab J Chem 10(1):S121–S126

    Article  CAS  Google Scholar 

  • Al-Karawia AJM, Al-Qaisia ZHJ, Abdullaha HI, Al-Mokarama AMA, Al-Heetimib DTA (2011) Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper(II) ions from water. Carbohydr Polym 83:495–500

    Article  Google Scholar 

  • AL-Sabagh AM, Abdeen Z (2010) Preparation and characterization of hydrogel based on polyvinyl alcohol crosslinked by different cross linker used to dry organic solvents. J Polym Environ 18:576–583

    Article  CAS  Google Scholar 

  • Alsabagh AM, Elsabee MZ, Moustafa YM, Elfky A, Morsi RE (2014) Corrosion inhibition efficiency of some hydrophobically modified chitosan surfactants in relation to their surface active properties. Egyptian J Pet 23(4):349–359

    Article  Google Scholar 

  • Amit B, Mika S (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater--a short review. Adv Colloid Interf Sci 152:26–38

    Article  Google Scholar 

  • Barros FCF, Cavalcante RM, Carvalho TV, Dias FS, Queiroz DC, Vasconcellos LCG, Nascimento RF (2006) Produção e Caracterização de esfera de quitosana modificada quimicamente. Rev Iberoam Polim 7:232

    Google Scholar 

  • Baum EJ (1978) In: Gelboin HV, Ts’o POP (eds) Polycyclic hydrocarbons and cancer, environment chemistry and metabolism. Academic Press, New York/San Francisco/London, p 1

    Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R (2008) Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42:633–642

    Article  CAS  Google Scholar 

  • Bulut Y, Akçay G, Elma D, Serhatl IE (2009) Synthesis of clay-based super absorbent composite and its sorption capability. J Hazard Materials 171:717–723

    Article  CAS  Google Scholar 

  • Chang Q, Hao X, Duan L (2008) Synthesis of crosslinked starch-graft- polyacrylamideco-sodium xanthate and its performances in wastewater treatment. J Hazard Mater 159:548–553

    Article  CAS  Google Scholar 

  • Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit Rev Microbiol 5:423–445

    Article  CAS  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Int Biodeterior Biodegrad 54:167–174

    Article  CAS  Google Scholar 

  • da Silva Grem IC, Lima BNB, Carneiro WF, de Carvalho Queirós YG, Mansur CRE (2013) Chitosan microspheres applied for removal of oil from produced water in the oil industry. Polímeros 23(6):705–711

    Article  Google Scholar 

  • Demitri C, Sole RD, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460

    Article  CAS  Google Scholar 

  • Enas MA (2015) Hydrogel: preparation, characterization and applications: a review. J of Adv Res 6:105–121

    Article  Google Scholar 

  • Ferrus R, Pages P (1977) Determination of the water retention value (WRV) of chitosan. Cellulose Chem Technol 11:633–640

    CAS  Google Scholar 

  • Ibrahim S, Wang S, Ang HM (2010) Removal of emulsified oil from oily wastewater using agricultural waste barley straw. Biochem Eng J 49(1):78–83

    Article  CAS  Google Scholar 

  • Inagaki M, Kawahara A, Nishi Y, Iwashita N (2002) Heavy oil sorption and recovery by using carbon fiber felts. Carbon 40:1487–1492

    Article  CAS  Google Scholar 

  • Jamaly S, Giwa A, Hasan SW (2015) Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J Environ Sci 37:15–30

    Article  CAS  Google Scholar 

  • KaÅŸgöz H, DurmuÅŸ A, KaÅŸgöz A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19:213–220

    Article  Google Scholar 

  • Lee WF, Huang CT (2008) Immobilization of trypsin by thermos sresponsive hydrogel for the affinity separation of trypsin inhibitor. Desalination 234:195–203

    Article  CAS  Google Scholar 

  • Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672

    Article  CAS  Google Scholar 

  • Liao MH, Chen DH (2002) Preparation and characterization of a novel magneticnano-adsobent. J Material Chem 12:3654–3659

    Article  CAS  Google Scholar 

  • Machı’n-Ramı’rez C, Okoh AI, Morales D, Mayolo-Deloisa K, Quintero R, Trejo-Herna’ndez MR (2008) Chemosphere 70:737–744

    Article  Google Scholar 

  • Matsumura S, Kurita H, Shimokobe H (1993) Anaerobic biodegrability of polyvinyl alcohol. Biotechnol Lett 15:749–754

    Article  CAS  Google Scholar 

  • Moazed H, Viraraghavan T (2005) Use of organo-clay/anthracite mixture in the separation of oil from oily waters. Energy Sources 27(1–2):101–112

    Article  CAS  Google Scholar 

  • Moustafa YM (2004) Contamination by polycyclic aromatic hydrocarbons in some Egyptian Mediterranean coasts. J Biosci Biotechnol Res Asia 2:15–24

    CAS  Google Scholar 

  • Navarro RR, Tatsumi K (2001) Improved performance of a chitosan-based adsorbent for the sequestration of some transition metals. Water Sci Technol 43:9–16

    Article  CAS  Google Scholar 

  • Naziha C, L’Hocine Y, Lukas G, Federico LM, Soumia C, Silvia F (2015) History and applications of hydrogels. J Biomed Sci 4:2–13

    Google Scholar 

  • Panpanit S, Visvanathan C (2001) The role of bentonite in uf flux enhancement mechanisms for oil/water emulsion. J Membr Sci 184:59–68

    Article  CAS  Google Scholar 

  • Peniche C, Argüelles-Monal W, Peniche H, Acosta N (2003) Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci 3(10):511–520

    Article  CAS  Google Scholar 

  • Poulopoulos SG, Voutsas EC, Grigoropoulou HP, Philippopoulos CJ (2005) Stripping as a pretreatment process of industrial oily wastewater. J Hazard Mater 117:135–139

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman JT, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85:257–261

    Article  CAS  Google Scholar 

  • Sokker HH, El-Sawy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190:359–365

    Article  CAS  Google Scholar 

  • Solisio C, Lodi A, Converti A, Borghi MD (2002) Removal of exhausted oils by adsorption on mixed Ca and Mg oxides. Water Res 36:899–904

    Article  CAS  Google Scholar 

  • Torres MA, Vieira RS, Beppu MM, Santana CS (2006) Producao ecaracterizacao de microesferas de quitosana modificadas quimicamente. PolÃmeros: Ciencia e Tecnologia 15:306–312

    Article  Google Scholar 

  • Vieira RS, Beppu MM (2006) Dynamic and static adsorption and desorption of Hg (II) ions on chitosan membranes and spheres. Water Res 40:1726–1734

    Article  CAS  Google Scholar 

  • Zheng Y, Wang A (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromolecular Sci A 47:33–38

    Article  CAS  Google Scholar 

  • Zheng Y, Li P, Zhang J, Wang A (2007) Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly (sodium acrylate)/vermiculite super absorbent composites. Eur Polym J 43:1691–1698

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Department of Petrochemicals at the Egyptian Petroleum Research Institute for their valuable assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdeen, Z. (2018). Treatment of Oily Wastewater Using Hydrogels. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_21

Download citation

Publish with us

Policies and ethics