Skip to main content

Oil Spill Removal by Mycoremediation

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons

Abstract

Oil spills are always harmful, whether accidental or deliberate as it contains hydrocarbons which are carcinogenic and also cause great damage to marine ecosystem disturbing its food chain and hence a threat to entire marine community. Many chemical and physical methods are used to remove the spilled oil of ocean floor, each having some drawbacks. Bioremediation has a promising future in oil spill removal in which indigenous or exogenous microbes are used to clean the oil spill. These microbes are mostly fungi, bacteria, and yeasts, which are already present in the water. Otherwise not dividing actively, during spillage these proliferate quickly and eat up the hydrocarbons which are essential for their growth producing ultimate end products – carbon dioxide and water. Though not in abundance in marine ecosystem, fungi are found to be better degrader of hydrocarbon than other microbes, and its usage to clean up oil spills is burgeoning. This chapter generally emphasizes on marine fungi, and its role in degrading crude oil components as the oceans is the largest and ultimate receptors of hydrocarbon pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahearn DG, Roth FJ, Meyers SP (1968) Ecology and characterization of yeasts from aquatic regions of South Florida. Mar Boil 1:291–308

    Article  Google Scholar 

  • Ahearn DG and Meyers SP (1971) In “Biodeterioration of materials” (H. Harry and E.H. Van Der Plas, eds.), ApplSciPubl. pp 12–18

    Google Scholar 

  • Allen AA, Ferek RJ (1993) Advantages and disadvantages of burning spilled oil. In: Proceedings of the 1993 international oil spill conference. American Petroleum Institute, Washington, DC, pp 765–772

    Google Scholar 

  • Al-Nasrawi H (2012) Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J Bioremed Biodegr 3:147. https://doi.org/10.4172/2155-6199.1000147

    Article  CAS  Google Scholar 

  • Atlas R (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev Louisville Kentucky 45:180–209

    CAS  Google Scholar 

  • Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31(4–12):178–182

    Article  CAS  Google Scholar 

  • Atlas RM, Philp J (2005) Bioremeditation: Applied microbial solutions for real world environmental clean up. ASM press, Washington DC, pp 1–292

    Google Scholar 

  • Bartha R, Atlas RM, Ahearn DG, Meyers SP (1997) Biodegradation of oil in seawater, writing factor and artificial stimulation. In: The microbial degradation of oil pollutants. Centre for Wetland Resources, Louisiana, pp 147–152

    Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson S, Willcock S, Richard T (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batelle CD (2000) Mushrooms: higher macrofungi to clean up the environment. Batelle Environmental Issues, Fall 2000

    Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum Microbiology. Macmillan, New York, pp 440–445

    Google Scholar 

  • Buist IA (1995) Demulsifiers and modified heli-torch fuels to enhance in-situ burning of emulsion. Summary report S.L. Ross Environment Research Ltd., Ottawa, Ontario for Alaska clean seas, Anchorage, Alaska

    Google Scholar 

  • Buist IA, Ross SL, Trudel BK, Taylor E, Campbell TG, Westphal PA, Meyers MR, Ronzio GS, Allen AA, Nordvik AB (1994) The science, technology and effects of controlled burning of oil at sea, MSRC technical report series 94–013. Marine Spill Response Corporation, Washington, DC

    Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G & Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75: 6415–6421

    Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation, vol 19, pp 324–333

    Google Scholar 

  • Cerniglia CE, Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34:363–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE, Gibson DT (1978) Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch Biochem Biophys 1986:121–127

    Article  Google Scholar 

  • Cerniglia C, Perry JJ (1973) Crude oil degradation by micro-organisms isolated from the marine environment. Z Allg Mikrobiol 13:299–306

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47:119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE, Dodge RH, Gibson DT (1980) Studies on fungal oxidation of polycyclic aromatic hydrocarbons. Bot Mar 23:121–124

    Article  CAS  Google Scholar 

  • Cerniglia CE, Freeman JP, Mitchum RK (1982) Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol 43:1070–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE, Althaus JR, Evans FE, Freeman JP, Mitchum RK, Yang SK (1983) Stereochemistry and evidence for an arene-oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem Biol Interact 44:119–132

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5(4):423–445

    Google Scholar 

  • Cooney JJ, Silver SA, Beck EA (1985) Factors influencing hydrocarbon degradation in three freshwater lakes. Microb Ecol 11:127–137

    Article  CAS  PubMed  Google Scholar 

  • Da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405

    Article  Google Scholar 

  • Da Silva M, Espósito E, Moody JD, Canhos VP, Cerniglia CE (2004) Metabolism of aromatic hydrocarbons by the filamentous fungus Cyclothyrium sp. Chemosphere 57:943–952

    Article  PubMed  Google Scholar 

  • Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156

    Article  CAS  PubMed  Google Scholar 

  • Dodge RH, Gibson DT (1980) Fungal metabolism of benzo[a]anthracene. Abstracts of the annual meeting of the American Society for Microbiology

    Google Scholar 

  • Farrington JW, McDowell JE (2004) Mixing oil and water: tracking the sources and impacts of oil pollution in the marine environment. Oceanus Cambridge 43(1):46–49

    Google Scholar 

  • Fedorak PM, Semple KM, Westlake DWS (1984) Oil-degrading capabilities of yeasts and fungi isolated from coastal marine environments. Can J Microbiol 30:565–571

    Article  CAS  Google Scholar 

  • Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez V, Núñez CE, Dendooven L (2010) Microbial communities to mitigate contamination of PAHs in soil – possibilities and challenges: a review. Environ Pollut Sci Res 10:11–30

    Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for, 2, 4-trichlorobenzene. BMC Syst Biol 4(7):4–14

    Google Scholar 

  • Hagihara T, Mishina Tanaka A, Fukui S (1977) Utilization of Pristane by yeast. Candida lipolytica fatty acid composition of pristane-grow cells. Agric Biol Chem 41:1745–1748

    CAS  Google Scholar 

  • Hagler AN, Ahearn DG (1987) Ecology of aquatic yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol. 1, biology of yeasts, vol 181, 2nd edn. Academic, London, p 205

    Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Hassanshahian M, Tebyanian H, Cappello S (2012) Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Pollut Bull 64:1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi. Phytopathology 87:888–891

    Article  CAS  PubMed  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology. W.H. Freeman and company, New York, p 743

    Google Scholar 

  • Ibe SN, Ibe EC (1984) Control and dispersion potential of Oil Spills by bacteria seeding, In: The petroleum industry and the Nigerian environment proceeding of the 1983 international seminar. Nigerian National Petroleum Corporation (NNPC), Lagos, pp 188–191

    Google Scholar 

  • International energy agency, report on oil market (2016) https://www.iea.org/oilmarketreport/omrpublic/

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Kevin DH, Gareth Jones EB, Eduardo Leanä O, Stephen BP, Asha DP, Lilian LPV (1998) Role of fungi in marine ecosystem. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic, New York

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial-degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep sea Antarctic plankton. Nature 409:603

    Article  CAS  PubMed  Google Scholar 

  • Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78 MINIREVIEW

    Article  CAS  PubMed  Google Scholar 

  • Michel J, Shigenaka G, Hoff R (2010) Oil spill response and cleanup techniques. Mar Pollut Bull 40(11)

    Google Scholar 

  • Mukhulyonov IU, Kuznetsov D, Averbukh A, Tumarkina E (1974) Chemical technology. Nptel- Module 4 Mir Publishers, Moscow

    Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807

    Article  CAS  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojo OA (2005) Petroleum-hydrocarbon utilization by native bacterial population from a waste water canal Southwest Nigeria. Afr J Biotechnol 5:333–337

    Google Scholar 

  • Okerentugba PO, Ezeronye OU (2003) Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria. Afr J Biotechnol 2(9):288–292

    Article  CAS  Google Scholar 

  • Ourisson G, Albercht P, Rohmer M (1979) The hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure Appl Chem 51:709–729

    Article  CAS  Google Scholar 

  • Passarini MR, Rodrigues MV, Da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370

    Article  CAS  PubMed  Google Scholar 

  • Peng R, Xiong A, Xue Y, Fu X, Gao F, Zhao W, Tian Y, Yao Q (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  • Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Pesticides in the modern world-pesticides use and management. Universidade de São Paulo, Instituto de Química de São Carlos

    Google Scholar 

  • Raikar MT, Raghukumar S, Vani V, David JJ, Chandramohan D (2001) Thraustochytrid protists degrade hydrocarbons. Ind J Mar Sci 30:139–145

    CAS  Google Scholar 

  • Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:173–215

    Google Scholar 

  • Rhodes CJ (2013) Applications of bioremediation and phytoremediation. Sci Prog 96(4):417–427

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CJ (2014) Mycoremediation (bioremediation with fungi) – growing mushrooms to clean the earth. Chem Speciat Bioavailab 26(3):196–198

    Article  Google Scholar 

  • Richards TA, Vepritskiy AA, Gouliamova D, Nierzwicki-Bauer SA (2005) The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7:1413–1425

    Article  CAS  PubMed  Google Scholar 

  • Richards T, Jones M, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation and monitored natural attenuation. Environ Pollut 136(1):187–195

    Article  CAS  PubMed  Google Scholar 

  • Schliephake K, Baker WL, Lonergan GT (2003) Chapter 35: decolorization of industrial waste and degradation of dye water. In: Arora D, Bridge PD, Bhatnagar D (eds) Fungal biotechnology in agriculture, food and environmental applications. Marcel Dekker, New York, pp 419–429

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):318A–323A

    Article  CAS  PubMed  Google Scholar 

  • Singer ME, Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 1–60

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Book  Google Scholar 

  • Stamets P (2005) Mycelium running: how mushrooms can help save the world. Ten Speed Press, Berkeley

    Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152(2):279–285

    Article  CAS  PubMed  Google Scholar 

  • Transportation Research Board and National Research Council (2003) Oil in Sea III: inputs, fates and effects. The National Academies Press, Washington, DC. https://doi.org/10.17226/10388

    Book  Google Scholar 

  • United Nations Documentation Research Guide (2011) United Nations (UN): environmental commission. United Nations, Web. <http://www.un.org/Depts/dhl/resguide/specenv.html

  • Wainwright BJ, Zahn GL, Spalding HL, Sherwood AR, Smith CM, Amend AS (2017) Fungi associated with mesophotic macae from the ‘Au‘au Channel, west Maui are differentiated by host and overlap terrestrial communities. Peer J 5:e3532roalg. https://doi.org/10.7717/peerj.3532

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR (1974) Microbial Petroleum degradation: Use of mixed hydrocarbon substrates. Appl Microbiol 27(6):1053–1060

    Google Scholar 

  • Walker J, Austin H, Colwell R (1975) Utilization of mixed hydrocarbon substrate by petroleum-degrading microorganisms. J Gen Appl Microbiol 21:27–39

    Article  CAS  Google Scholar 

  • White HK, Xu L, Hartmann P, Quinn JG, Reddy CM (2013) Unresolved complex mixture (UCM) in coastal environments is derived from fossil sources. Environ Sci Technol 47(2):726–731

    Article  CAS  PubMed  Google Scholar 

  • Wolfgang KS, Glenn Howells W (1969) Interfacially active acids in a California crude oil isolation of carboxylic acids and phenols. Anal Chem 41(4):554–562

    Article  Google Scholar 

  • Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41(9):1463–1468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Rajeev Kumar is thankful to DST, SERB/F/8171/2015-16 as well as UGC (F. No. 194-2/2016 IC) for providing financial support. Ms. Ashpreet Kuar is also thankful to the Department of Environment Studies, Panjab University, Chandigarh, India for providing necessary assistance to complete this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Kaur, A. (2018). Oil Spill Removal by Mycoremediation. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_20

Download citation

Publish with us

Policies and ethics