Skip to main content

Biosurfactants in Improving Bioremediation Effectiveness in Environmental Contamination by Hydrocarbons

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons

Abstract

Recent biotechnological advances currently evidence new surfactant production technologies. Biocompounds produced by fermentative processes appeared as an economic and sustainable alternative to many synthetic molecules. Thereby, biosurfactants have become a promising substitute due to their synthesis potential by a wide variety of microorganisms. Biosurfactants are a highly diverse group of structures, such as glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. This diversity promotes many advantages compared to synthetic surfactants, thus making biosurfactants the most natural choice for technological advances associated with sustainable development. Such advantages include fermentative production viability by using renewable resources, effectiveness in small concentrations even under extreme conditions, selective and specific potential for several applications, lower toxicity, higher biodegradability, and better stability to physicochemical variations. Despite their benefits, biosurfactants are not widely used because of the high production costs. Hence, cost-effective substrates, optimized cultivation conditions, and mutant lineage development are imperative to make these biomolecules an economically competitive product to propose a widespread replacement of synthetic surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Accorsini FR, Mutton MJR, Lemos EGM, Benincasa M (2012) Biosurfactants production by yeasts using soybean oil and glycerol as low-cost substrate. Braz J Microbiol 43:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Admon S, Green M, Avnimelech Y (2001) Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Bioremediat J 5:193–209

    Article  CAS  Google Scholar 

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  CAS  PubMed  Google Scholar 

  • Al-Mutairi N, Bufarsan A, Al-Rukaibi F (2008) Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere 74:142–148

    Article  CAS  PubMed  Google Scholar 

  • Amani H, Müller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotechnol 170:1080

    Article  CAS  PubMed  Google Scholar 

  • Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B: Biointerfaces 95:23–29

    Article  CAS  PubMed  Google Scholar 

  • Araujo LV, Guimarães CR, Marquita RLS, Santiago VMJ, De Souza MP, Nitschke M, Freire DMG (2016) Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control 63:171–178

    Article  CAS  Google Scholar 

  • Atlas MR (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescence isolated from a petroleum contaminated soil. Environ Int 26:413–416

    Article  CAS  PubMed  Google Scholar 

  • Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Bartha R, Atlas RM (1977) The Microbiology of Aquatic oil Spills. Adv Appl Microbiol 22:225–226

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek 85:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bezza FA, Chirwa EMN (2015a) Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf Environ Prot 98:354–364

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2015b) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178

    Article  CAS  Google Scholar 

  • Bhadoriya SS, Madoriya N, Shukla K, Parihar MS (2013) Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmaco 2:1–5

    Google Scholar 

  • Bidoia ED, Montagnolli RN, Lopes PRM (2010) Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, Formatex Research Center: Espanha, vol 2, pp 1277–1288

    Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    Article  CAS  PubMed  Google Scholar 

  • Boudour AA, Guerrero-Baraja C, JIorle BV, Malcomson ME, Paull AK, Somogyi A, Trinh LN, Bater RB, Maier RM (2004) Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Appl Environ Microbiol 70:1114–1120

    Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116

    Article  CAS  Google Scholar 

  • Cerqueira VS, Peralba MCR, Camargo FAO, Bento FM (2014) Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeterior Biodegrad 95:338–345

    Article  CAS  Google Scholar 

  • Chavan A, Mukherji S (2008) Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N:P ratio. J Hazard Mater 154:63–72

    Article  CAS  PubMed  Google Scholar 

  • Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa SGVAO, Nitschke M, Contiero J (2008) Produção de biotensoativos a partir de resíduos de óleos e gorduras. Ciênc Tecnol Aliment 28:34–38

    Article  CAS  Google Scholar 

  • Cruz JM, Hughes C, Quilty B, Montagnolli RN, Bidoia ED (2017) Agricultural Feedstock Supplemented with Manganese for Biosurfactant Production by Bacillus subtilis. Waste Biomass Valorization:1–6

    Google Scholar 

  • D’Aes J, Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant – Pseudomonas interactions and their importance to biocontrol. Environment Microbiol Rep 2:359–372

    Article  CAS  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Develter DWG, Lauryssen LML (2010) Properties and industrial applications of sophorolipids. Eur J Lipid Sci Technol 112:628–638

    Article  CAS  Google Scholar 

  • Díaz de Rienzo MA, Kamalanathan ID, Martin PJ (2016) Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochem 51:820–827

    Article  CAS  Google Scholar 

  • Diaz AB, Blandino A, Caro I (2018) Value added products from fermentation of sugars derived from agro-food residues. Trends Food Sci Technol 71:52–64 in press

    Article  CAS  Google Scholar 

  • Díaz-Ramírez IJ, Escalante-Espinosa E, Favela-Torres E, Gutiérrez-Rojas M, Ramírez-Saad H (2008) Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. Int Biodeterior Biodegradation 62:21–30

    Article  CAS  Google Scholar 

  • Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol 33:123–135

    Article  CAS  PubMed  Google Scholar 

  • Du J, Zhang A, Hao J, Wang J (2017) Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli. Biotechnol Lett 39:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Liu W, Zhao X, Han Y, O’Reilly SE, Zhao D (2017) Study of residual oil in Bay Jimmy sediment 5 years after the Deepwater Horizon oil spill: Persistence of sediment retained oil hydrocarbons and effect of dispersants on desorption. Sci Total Environ. 618:1244–1253 In press

    Article  CAS  PubMed  Google Scholar 

  • Dusane DH, Zinjarde SS, Venugopalan VP, MClean RJC, Weber MM, Rahman PKSM (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184

    Article  CAS  PubMed  Google Scholar 

  • Elanchezhiyan SS, Sivasurian N, Meenakshi S (2016) Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method. Carbohydr Polym 145:103–113

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA (2002) Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf. Can J Microbiol 48:176–182

    Article  CAS  PubMed  Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Vecino X, Ferreira D, Cruz JM, Moldes AB, Rodrigues LR (2017) Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids Surf B Biointerfaces 155:522–529

    Article  CAS  PubMed  Google Scholar 

  • Fish NM, Allenby DJ, Lilly MD (1982) Oxidation of n-alkanes: growth of Pseudomonas putida. Eur J Appl Microbiol Biotechnol 14:259–262

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestett IG, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627

    Article  CAS  Google Scholar 

  • Grote M, Van Bernem C, Böhme B, Callies U, Calvez I, Christie B, Colcomb K, Damian HP, Farke H, Gräbsch C, Hunt A, Höfer T, Knaack J, Kraus U, Le Floch S, Le Lann G, Leuchs H, Nagel A, Nies H, Nordhausen W, Rauterberg J, Reichenbach D, Scheiffarth G, Schwichtenberg F, Theobald N, Voß J, Wahrendorf DS (2018) The potential for dispersant use as a maritime oil spill response measure in German waters. Mar. Pollut. Bull. 129(2):623–632

    Article  CAS  PubMed  Google Scholar 

  • Hazra C, Kundu D, Ghosh P, Joshi S, Dandia N, Chaudharia A (2011) Screening and identification of Pseudomonas aeruginosa AB4 for improved production, characterization and application of a glycolipid biosurfactant using low-cost agro-based raw materials. J Chem Technol Biotechnol 86:185–198

    Article  CAS  Google Scholar 

  • Heryani H, Putra MD (2017) Dataset on potential large scale production of biosurfactant using Bacillus sp. Data Br 13:196–201

    Article  Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692

    Article  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick B, Greenberg BM (2004) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:2233–2235

    Article  CAS  Google Scholar 

  • Juhasz A, Stanley GA, Britz ML (2000) Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: effects on Microtox and mutagenicity bioassays. Bioremediation J 4:271–283

    Article  CAS  Google Scholar 

  • Lee SH, Oh BI, Kim JG (2008) Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity. Biores Technol 99:2578–2587

    Article  CAS  Google Scholar 

  • Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour Technol 224:25–33

    Article  CAS  PubMed  Google Scholar 

  • Lladó S, Solanas AM, De Lapuente J, Borràs M, Viñas M (2012) A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435-436:262–269

    Article  CAS  PubMed  Google Scholar 

  • Lopes PRM, Bidoia ED (2009) Evaluation of the biodegradation of different types of lubricant oils in liquid médium. Braz Arch Biol Technol 52:1285–1290

    Article  CAS  Google Scholar 

  • Lopes PRM, Domingues RF, Bidoia ED (2008) Descarte de embalagens e quantificação do volume de óleo lubrificante residual no município de Rio Claro-SP. HOLOS Environ 8:166–178

    Article  Google Scholar 

  • Lors C, Ryngaert A, Périé F, Diels L, Damidot D (2010) Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere 81:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Lovaglio RB, Santos FJ, Jafelicci M Jr, Contiero J (2011) Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf B Biointerfaces 85:301–305

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14ª ed. Pearson Education, New York

    Google Scholar 

  • Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon sources – a review. J Surfactants Deterg 2:237–241

    Article  CAS  Google Scholar 

  • Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22:2280–2292

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mang T, Gosalia A (2017) Lubricants and their market. In: Mang T, Dresel W (eds) Lubricants and lubrication, 3rd edn. Wiley-VCH, Weinheim, pp 1–9

    Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  PubMed  Google Scholar 

  • Martins M, Costa PM, Ferreira AM, Costa MH (2013) Comparative DNA damage and oxidative effects of carcinogenic and non-carcinogenic sediment-bound PAHs in the gills of a bivalve. Aquat Toxicol 142-143:85–95

    Article  CAS  PubMed  Google Scholar 

  • Meneses DP, Gudiña EJ, Fernandes F, Gonçalves LRB, Rodrigues LR, Rodrigues S (2017) The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Microbiol Res 204:40–47

    Article  CAS  PubMed  Google Scholar 

  • Mille G, Guiliano M, Asia L, Malleret L, Jalaluddin N (2006) Sources of hydrocarbons in sediments of the Bay of Fort France (Martinique). Chemosphere 64:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81

    Article  CAS  Google Scholar 

  • Moldes AB, Torrado AM, Barral MT, Domínguez JM (2007) Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J Agric Food Chem 55:4481–4486

    Article  CAS  PubMed  Google Scholar 

  • Mondal MH, Sarkar A, Maiti TK, Saha B (2017) Microbial assisted (Pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies. J Mol Liq 242:873–878

    Article  CAS  Google Scholar 

  • Montagnolli RN, Bidoia ED (2012) Petroleum derivatives biodegradation: environmental impact and bioremediation strategies. Amazon

    Google Scholar 

  • Montagnolli RN, Lopes PRM, Bidoia ED (2009) Applied models to biodegradation kinetics of lubricant and vegetable oils in wastewater. Int Biodeterior Biodegradation 63:297–305

    Article  CAS  Google Scholar 

  • Monteiro AS, Coutinho JOPA, Júnior AC, Rosa CA, Siqueira EP, Santos VL (2009) Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents. J Basic Microbiol 49:553–563

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:09–515

    Article  CAS  Google Scholar 

  • Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids-next generation surfactants? J Biotechnol 162:366–380

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Nee’Nigam PS, Pandey (2009) A Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, p 466

    Google Scholar 

  • Nievas ML, Commendatore MG, Esteves JL, Bucala V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Mater 154:96–104

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Biores Technol 97:336–341

    Article  CAS  Google Scholar 

  • Nitschke M, Ferraz C, Pastore GM (2004) Selection of microorganisms for biosurfactant production using agro industrial wastes. Braz J Microbiol 35:81–85

    Article  Google Scholar 

  • Nitschke M, Costa SGVAO, Contiero J (2005a) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Costa SGVAO, Hadad R, Gonçalves LA, Eberlin MN, Contiero J (2005b) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Progress 21:1562–1566

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SGVAO, Contiero J (2011) Rhamnolipids and PHAs: recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem 46:621–630

    Article  CAS  Google Scholar 

  • Oluwaseun AC, Kola OJ, Mishra P, Singh JR, Singh AK, Cameotra SS, Micheal BO (2017) Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustain Chem Pharm 6:26–36

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Pagnout C, Rast C, Veber AM, Poupin P, Férard JF (2006) Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11. Ecotoxicol Environ Saf 65:151–158

    Article  CAS  PubMed  Google Scholar 

  • Patel MK, Theiss A, Worrell E (1999) Surfactant production and use in Germany: Resource requirements and CO2 emissions. Resour Conserv Recyc 25:61–78

    Article  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza GA, Turek A, Król E, Szczygłowska R (2013) Antifungal and antibacterial properties of surfactin isolated from Bacillus subtilis growing on molasses. Afr J Microbiol Res 7:3165–3170

    Article  Google Scholar 

  • Prosser CM, Redman AD, Prince RC, Paumen ML, Letinski DJ, Butler JD (2016) Evaluating persistence of petroleum hydrocarbons in aerobic aqueous media. Chemosphere 155:542–549

    Article  CAS  PubMed  Google Scholar 

  • Rahman KS, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Biores Technol 81:25–32

    Article  CAS  Google Scholar 

  • Rane AN, Baikar VV, Ravi Kumar DV, Deopurkar RL (2017) Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol 8:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Remichkova M, Danka G, Ivana R, Karpenko E, Shulga A, Galabov AS (2014) Anti-Herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Zeitschrift für Naturforschung C 63:75–81

    Article  Google Scholar 

  • Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, WU J, Jiang Y, Keenan BG, Castle AB, Haskell RF, Smith TF, Somasundaran P, Jarrell KA (2010) Use of sustainable chemistry to produce and acyl amino acid surfactant. Appl Microbiol Biotechnol 86:1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Richard JY, Vogel TM (1999) Characterization of a soil bacterial consortium capable of degrading diesel fuel. Int Biodeterior Biodegradation 44:93–100

    Article  CAS  Google Scholar 

  • Rocha MVP, Barreto RVG, Melo VMM, Gonçalves LRB (2009) Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl Biochem Biotechnol 155:366–378

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1997) Bioemulsans: Microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    Article  CAS  PubMed  Google Scholar 

  • Sabaté J, Viñas M, Solanas A (2004) Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. Int Biodeterior Biodegradation 54:19–25

    Article  CAS  Google Scholar 

  • Sasayama T, Kamikanda Y, Shibasaki-Kitakawa N (2018) Process design for green and selective production of bio-based surfactant with heterogeneous resin catalyst. Chem Eng J 334:2231–2237

    Article  CAS  Google Scholar 

  • Scheibel JJ (2004) The evolution of anionic surfactant technology to meet the requirements of the laundry detergent industry. J Surfactants Deterg 7:319–328

    Article  CAS  Google Scholar 

  • Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation based bioremediation of diesel fuel: field demonstration. Biodegradation 12:311–316

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Liu L, Gang H, Yang S, Mu B (2015) Structural diversity of the microbial surfactin derivatives from selective esterification approach. Int J Mol Sci 16:1855–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva RCFS, Almeida DG, Meira HM, Silva EJ, Farias CBB, Rufino RD, Luna JM, Sarubbo LA (2017) Production and characterization of a new biosurfactant from Pseudomonas cepacia grown in low-cost fermentative medium and its application in the oil industry. Biocatal Agric Biotechnol 12:206–215

    Article  Google Scholar 

  • Simpanen S, Mäkelä R, Mikola J, Silvennoinen H, Romantschuk M (2016) Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-β-cyclodextrin to enhance biostimulation. Int Biodeterior Biodegrad 106:117–126

    Article  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  CAS  PubMed  Google Scholar 

  • Smyth TJP, Perfumo A, Marchant R, Banat IM (2010) Isolation and analysis of low molecular weight microbial glycolipids. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlim, pp 3705–3723

    Chapter  Google Scholar 

  • Syldatk C, Wagner F (1987) Production of biosurfactants. Biosurf Biotechnol 25:89–120

    CAS  Google Scholar 

  • Syldatk C, Lang S, Matulovic U, Wagner F (1985) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z fur Naturforsch Sect C: Biosci 40:61–67

    Article  CAS  Google Scholar 

  • Tamada IS, Montagnolli RN, Lopes PRM, Bidoia ED (2012) Toxicological evaluation of vegetable oils and biodiesel in soil during the biodegradation process. Braz J Microbiol 43:1576–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshm IS, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Biores Technol 102:3366–3372

    Article  CAS  Google Scholar 

  • Van Bogaert I, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme E (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Article  CAS  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Kuo YC, Hong A, Chang YM, Kao CM (2016) Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemosphere 164:558–567

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Yu L, Duan L, Naidu R, Semple KT (2018) Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Sci Total Environ 613-614:1140–1153 In press

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tang J, Wang L, Liu J, Gurav RG, Sun K (2016) A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. J Environ Sci (China) 47:7–13

    Article  Google Scholar 

  • Zhao F, Shi R, Cui Q, Han S, Dong H, Zhang Y (2017) Biosurfactant production under diverse conditions by two kinds of biosurfactant-producing bacteria for microbial enhanced oil recovery. J Pet Sci Eng 157:124–130

    Article  CAS  Google Scholar 

  • Zobell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Renato Matos Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopes, P.R.M., Montagnolli, R.N., Cruz, J.M., Claro, E.M.T., Bidoia, E.D. (2018). Biosurfactants in Improving Bioremediation Effectiveness in Environmental Contamination by Hydrocarbons. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_2

Download citation

Publish with us

Policies and ethics