Skip to main content

Petroleum Microbiology Under Extreme Conditions

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons

Abstract

Petroleum contamination of environmental matrices is a pervasive, global problem. Crude oil exploration, processing, handling and transport release significant amounts of petro-hydrocarbons into the ecosystem. Many petro-compounds are recognized or suspected as carcinogens, mutagens and teratogens and, therefore, pose significant risks to human and ecosystem health. Petroleum hydrocarbon pollution constitutes an enormous challenge when areas with suboptimal environmental conditions are contaminated. This is because these regions are characterized by the occurrence of delicate ecosystems and because remedial efforts tend to be frustrated, owing to the unfavourable climatic and environmental conditions. Due to extensive petroleum exploration in some of these areas, petroleum hydrocarbon contamination occurs frequently, degrading the environment. Efficacious, sustainable abatement strategies are therefore, necessary to mitigate contamination.

Over time, several treatment schemes and strategies for the replenishment of petroleum-contaminated sites have been designed, optimized and implemented. Many conventional techniques and technologies, however, have well-known drawbacks. This has prompted research into eco-friendly and economical cleaning alternatives. Biological remediation is interesting choice, which has been the widespread research topic and has been adopted in many parts of the world because of its (comparative) low-cost, minimal environmental impacts and public acceptance. Here, the general sources of petroleum hydrocarbons into the environment are explored as well as the effects of physicochemical and environmental factors on the transportation, microbiology and overall fate of petro-products in environmental matrices. The potential of petroleum hydrocarbon biodegradation under extreme environmental conditions is considered with an emphasis on the effects of unfavourable salinity, temperature, moisture, oxygen, nutrient, pressure and pH conditions. The roles of extremophiles in petroleum hydrocarbon biodegradation in extreme environments are also discussed. The influence of biosurfactants and the capacity of extremophiles to produce these under extreme environmental conditions are discussed as well as the relevance of bioaugmentation and biostimulation. Bioavailability, which influences the overall rate and efficiency of bioremediation protocols, is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Al-Thukair A, de Beer D (2006) Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57:290–301

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Al-Kharusi S, Prigent S, Headley T (2014) Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland. PLoS One 9:e114570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aislabie J, McLeod M, Fraser R (1998) Potential for biodegradation of hydrocarbons in soil from the Ross dependency, Antarctica. Appl Microbiol Biotechnol 49:210–214

    Article  CAS  Google Scholar 

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  • Aislabie JM, Ryburn J, Gutierrez-Zamora ML, Rhodes P, Hunter D, Sarmah AK, Barker GM, Farrell RL (2012) Hexadecane mineralization activity in hydrocarbon-contaminated soils of Ross Sea region Antarctica may require nutrients and inoculation. Soil Biol Biochem 45:49–60

    Article  CAS  Google Scholar 

  • Albrechtsen H, Christensen TH (1994) Evidence for microbial iron reduction in a landfill leachate-polluted aquifer (Vejen, Denmark). Appl Environ Microbiol 60:3920–3925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Daher R, Al-Awadhi N, El-Nawawy A (1998) Bioremediation of damaged desert environment using the windrow soil pile system in Kuwait. Environ Int 24:175–180

    Article  CAS  Google Scholar 

  • Alegbeleye OO (2015) Bioremediation of polycyclic aromatic hydrocarbons (PAHs) in water using indigenous microbes of Diep- and Plankenburg Rivers, Western Cape, South Africa, thesis. Cape Peninisula University of Technology

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego, pp 325–327

    Google Scholar 

  • Al-Hadhrami MN, Lappin-Scott HM, Fisher PJ (1996) Effects of the addition of organic carbon sources on bacterial respiration and n-alkane biodegradation of Omani crude oil. Mar Pollut Bull 32:351–357

    Article  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470

    Article  CAS  PubMed  Google Scholar 

  • Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7

    Article  CAS  Google Scholar 

  • Al-Sarawi HA, Jha AN, Al-Sarawi MA, Lyons BP (2015) Historic and contemporary contamination in the marine environment of Kuwait: an overview. Mar Pollut Bull 100:621–628

    Article  CAS  PubMed  Google Scholar 

  • Amadi A, Abbey SD, Nma A (1996) Chronic effects of oil spill on soil properties and microflora of a rainforest ecosystem in Nigeria. Water Air Soil Pollut 86:1–11

    Article  CAS  Google Scholar 

  • Arcangeli JP, Arvin E (1994) Biodegradation of BTEX compounds in a biofilm system under nitrate reducing conditions. Lewis Publishers, Boca Raton, pp 374–382

    Google Scholar 

  • Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 30(3):396–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM (1979) Measurement of hydrocarbon biodegradation potentials and enumeration of hydrocarbon-utilizing microorganisms using carbon-14 hydrocarbon-spiked crude oil. In: Native aquatic bacteria: enumeration, activity, and ecology. ASTM International, Philadelphia

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM (1991) Bioremediation of fossil fuel contaminated soils. In: In situ bioreclamation. Butterworth-Heinemann, Stoneham, pp 14–32

    Chapter  Google Scholar 

  • Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31:178–182

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng 14:309–318

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Bartha R (1973) Abundance, distribution and oil biodegradation potential of micro-organisms in Raritan Bay. Environ Pollut 1970 4:291–300

    Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas R, Horowitz A, Busdosh M (1978) Prudhoe crude oil in Arctic marine ice, water, and sediment ecosystems: degradation and interactions with microbial and benthic communities. J Fish Res Board Can 35:585–590

    Article  CAS  Google Scholar 

  • Atlas RM, Raymond RL (1977) Stimulated petroleum biodegradation. CRC Crit Rev Microbiol 5(4):371–386

    Article  CAS  PubMed  Google Scholar 

  • Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O (2017) Aerobic and anaerobic fungal metabolism and omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev 31:61–72

    Article  Google Scholar 

  • Balba MT, Al-Daher R, Al-Awadhi N, Chino H, Tsuji H (1998) Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environ Int 24:163–173

    Article  CAS  Google Scholar 

  • Bakermans C, Hohnstock-Ashe AM, Padmanabhan S, Padmanabhan P, Madsen EL (2002) Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities. Microb Ecol 44:107–117

    Article  CAS  PubMed  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Barret M, Carrère H, Delgadillo L, Patureau D (2010) PAH fate during the anaerobic digestion of contaminated sludge: do bioavailability and/or co-metabolism limit their biodegradation? Water Res 44(13):3797–3806

    Article  CAS  PubMed  Google Scholar 

  • Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, Tom LM, Andersen GL, Hazen TC, Nostrand JDV, Zhou J et al (2012) Microbial community analysis of a coastal salt marsh affected by the Deepwater horizon oil spill. PLoS One 7:e41305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian XY, Mbadinga SM, Liu YF, Yang SZ, Liu JF, Ye RQ, Gu JD, Mu BZ (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch GF (2017) Determination of sediment metal background concentrations and enrichment in marine environments – a critical review. Sci Total Environ 580:813–831

    Article  CAS  PubMed  Google Scholar 

  • Blanchet D, Grabowski A, Vandecasteele J (2001) Microbiology of oil degradation in reservoirs. Society of Petroleum Engineers

    Google Scholar 

  • Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  CAS  PubMed  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    Article  CAS  PubMed  Google Scholar 

  • Borzenkov IA, Milekhina EI, Gotoeva MT, Rozanova EP, Belyaev SS (2006) The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, western Siberia, and Vietnam. Microbiology 75:66–72

    Article  CAS  Google Scholar 

  • Bosch R, Garcıa-Valdés E, Moore ERB (1999) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157

    Article  CAS  PubMed  Google Scholar 

  • Botero LM, Brown KB, Brumefield S, Burr M, Castenholz RW, Young M, McDermott TR (2004) Thermobaculum terrenum gen. nov., sp. nov.: a non-phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia. Arch Microbiol 181(4):269–277

    Article  CAS  PubMed  Google Scholar 

  • Braddock JF, Ruth ML, Catterall PH, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31:2078–2084

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH (1995) Rapid toluene mineralization by aquifer microorganisms at Adak, Alaska: implications for intrinsic bioremediation in cold environments. Environ Sci Technol 29:2778–2781

    Article  CAS  PubMed  Google Scholar 

  • Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine environments. In: Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp 389–407

    Chapter  Google Scholar 

  • Broderick LS, Cooney JJ (1982) Emulsification of hydrocarbons by bacteria from freshwater ecosystems. Dev Ind Microbiol USA

    Google Scholar 

  • Brown LD, Cologgi DL, Gee KF, Ulrich AC (2017) Chapter 12: bioremediation of oil spills on land. In: Fingas M (ed) Oil spill science and technology, 2nd edn. Gulf Professional Publishing, Boston, pp 699–729

    Chapter  Google Scholar 

  • Buzzini P, Margesin R (2014) Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Cold-adapted yeasts. Springer, Berlin/Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Camenzuli D, Freidman BL (2015) On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Res 34:24492

    Article  CAS  Google Scholar 

  • Cameotra SS, Bollag JM (2003) Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Crit Rev Environ Sci Technol 33(2):111–126

    Article  CAS  Google Scholar 

  • Castaldini F (2008) Bioremediation of PAHs – limitations and solutions. Universita Di Bologna Alma Mater Digital Library, pp 230–256.

    Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PM (2000) Cold stress response in Archaea. Extremophiles 4(6):321–331

    Article  CAS  PubMed  Google Scholar 

  • Chamkha M, Mnif S, Sayadi S (2008) Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol Lett 283:23–29

    Article  CAS  PubMed  Google Scholar 

  • Chadrankant SK, Shwetha SR (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 11:1–11

    Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431

    Article  CAS  Google Scholar 

  • Chevron Cottin N, Merlin G (2007) Study of pyrene biodegradation capacity in two types of solid media. Sci Total Environ 380:116–123

    Article  CAS  PubMed  Google Scholar 

  • Chugunov VA, Ermolenko ZM, Zhigletsova SK, Martovetskaya II, Mironova RI, Zhirkova NA, Kholodenko VP, Urakov NN (2000) Development and application of a liquid preparation with oil-oxidizing Bacteria. Appl Biochem Microbiol 36:577–581

    Article  Google Scholar 

  • Chuvilin EM, Yershov ED, Naletova NS, Miklyaeva ES (2000) The use of permafrost for the storage of oil and oil products and the burial of toxic industrial wastes in the Arctic. Polar Rec 36:211–214

    Article  Google Scholar 

  • Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169:300–310

    Article  CAS  Google Scholar 

  • Collins CM, Racine CH, Walsh ME (1993) Fate and effects of crude oil spilled on subarctic permafrost terrain in interior Alaska: fifteen years later. Cold Regions Research and Engineering Lab Hanover

    Google Scholar 

  • Colwell RR, Mills AL, Walker JD, Garcia-Tello P, Campos-P V (1978) Microbial ecology studies of the Metula spill in the Straits of Magellan. J Fish Res Board Can 35(5):573–580

    Article  CAS  Google Scholar 

  • Cooney JJ, Silver SA, Beck EA (1985) Factors influencing hydrocarbon degradation in three freshwater lakes. Microb Ecol 11:127–137

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690

    Article  CAS  PubMed  Google Scholar 

  • Cuadros-Orellana S, Pohlschröder M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegrad 57:151–154

    Article  CAS  Google Scholar 

  • Cundell AM, Traxler RW (1973) Microbial degradation of petroleum at low temperature. Mar Pollut Bull 4(8):125–127

    Article  CAS  Google Scholar 

  • Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B Biointerfaces 84:292–300

    Article  CAS  PubMed  Google Scholar 

  • Das S, Dash HR (2014) Chapter 1: microbial bioremediation: a potential tool for restoration of contaminated areas. In: Microbial biodegradation and bioremediation. Elsevier, Oxford, pp 1–21

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4(4):383–388

    Article  Google Scholar 

  • Delille D, Delille B (2000) Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal sediments. Mar Environ Res 49:403–417

    Article  CAS  PubMed  Google Scholar 

  • Delille D, Bassères A, Dessommes A (1998) Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biol 19:237–241

    Article  Google Scholar 

  • Díaz MP, Grigson SJW, Peppiatt CJ, Burgess JG (2000) Isolation and characterization of novel hydrocarbon-degrading Euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2:522–532

    Article  Google Scholar 

  • Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79:145–153

    Article  CAS  PubMed  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dion P, Nautiyal CS (2007) Microbiology of extreme soils. Springer, Berlin

    Google Scholar 

  • Dong H, Rech JA, Jiang H, Sun H, Buck BJ (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) deserts. J Geophys Res Biogeosci 112:G02030

    Google Scholar 

  • Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  CAS  PubMed  Google Scholar 

  • Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Teniglobus gen nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Fantroussi S, Agathos S (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt FR (1994) Limitations and innovations in the control of environmental impacts from petroleum industry activities in the Arctic. Mar Pollut Bull 29:334–341

    Article  CAS  Google Scholar 

  • Eriksson M, Ka JO, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67(11):5107–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esseen PA, Rönnqvist M, Gauslaa Y, Coxson DS (2017) Externally held water – a key factor for hair lichens in boreal forest canopies. Fungal Ecol 30:29–38

    Article  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Fazi S, Butturini A, Tassi F, Amalfitano S, Venturi S, Vazquez E, Clokie M, Wanjala SW, Pacini N, Harper DM (2017) Biogeochemistry and biodiversity in a network of saline–alkaline lakes: implications of ecohydrological connectivity in the Kenyan Rift Valley. Ecohydrol Hydrobiol

    Google Scholar 

  • Filler DM, Snape I, Barnes DL (2008) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Floodgate G (1984) The fate of petroleum in marine ecosystem. In: Petroleum microbiology. Macmillion, New York, pp 355–398

    Google Scholar 

  • Foght JM, McFarlane DM (1999) Growth of extremophiles on petroleum. In: Enigmatic microorganisms and life in extreme environments. Springer, Dordrecht, pp 527–538

    Chapter  Google Scholar 

  • Fowler SW, Readman JW, Oregioni B, Villeneuve JP, McKay K (1993) Petroleum hydrocarbons and trace metals in nearshore Gulf sediments and biota before and after the 1991 war: an assessment of temporal and spatial trends. Mar Pollut Bull 27:171–182

    Article  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI (1986) The Antarctic cold desert and the search for traces of life on Mars. Adv Space Res 6:265–268

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–706

    Article  CAS  PubMed  Google Scholar 

  • Fuchs DTM, Neuhaus K, Scherer PS (2013) Life at low temperatures. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin/Heidelberg, pp 375–420

    Chapter  Google Scholar 

  • Gallego A, O’Hara Murray R, Berx B, Turrell WR, Beegle-Krause CJ, Inall M, Sherwin T, Siddorn J, Wakelin S, Vlasenko V et al (2018) Current status of deepwater oil spill modelling in the Faroe-Shetland Channel, Northeast Atlantic, and future challenges. Mar Pollut Bull 127:484–504

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  PubMed  Google Scholar 

  • Garneau MÈ, Michel C, Meisterhans G, Fortin N, King TL, Greer CW, Lee K (2016) Hydrocarbon biodegradation by Arctic Sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiol Ecol 92

    Google Scholar 

  • Gibbs CF, Pugh KB, Andrews AR (1975) Quantitative studies on marine biodegradation of oil. II. Effect of temperature. Proc R Soc Lond B Biol Sci 188:83–94

    Article  CAS  PubMed  Google Scholar 

  • Gibb A, Chu A, Wong RCK, Goodman RH (2001) Bioremediation kinetics of crude oil at 5 C. J Environ Eng 127(9):818–824

    Article  CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341

    Article  CAS  PubMed  Google Scholar 

  • Glazier DS (2014) Springs☆. In: Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Godoy-Faúndez A, Antizar-Ladislao B, Reyes-Bozo L, Camaño A, Sáez-Navarrete C (2008) Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile). J Hazard Mater 151:649–657

    Article  CAS  PubMed  Google Scholar 

  • Gogoi BK, Dutta NN, Goswami P, Krishna Mohan TR (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782

    Article  CAS  Google Scholar 

  • Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:ismej2015239

    Google Scholar 

  • Gran-Scheuch A, Fuentes E, Bravo DM, Jiménez JC, Pérez-Donoso JM (2017) Isolation and characterization of Phenanthrene degrading Bacteria from diesel fuel-contaminated Antarctic soils. Front Microbiol 8:1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    Article  CAS  Google Scholar 

  • Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. Nov., sp. nov., a novel thermophilic manganese- and Iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Evol Microbiol 47:505–509

    CAS  Google Scholar 

  • Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M, La Cono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12:2020–2033

    Article  CAS  PubMed  Google Scholar 

  • Gunkel W (1967) Experimentell- ökologische Untersuchungen über die limitierenden Faktoren des mikrobiellen Ölabbaues im marinen Milieu. Helgoländer Wiss Meeresunters 15:210

    Article  Google Scholar 

  • Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambrick GA, DeLaune RD, Patrick WH (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40:365–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL et al (2010) Deep-Sea oil plume enriches indigenous oil-degrading Bacteria. Science 330:204–208

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:nature02134

    Google Scholar 

  • Heath JS, Koblis K, Sager SL (1993) Review of chemical, physical, and toxicologic properties of components of total petroleum hydrocarbons. J Soil Contam 2:1–25

    Article  CAS  Google Scholar 

  • Hong S, Khim JS, Ryu J, Kang SG, Shim WJ, Yim UH (2014) Environmental and ecological effects and recoveries after five years of the Hebei Spirit oil spill, Taean, Korea. Ocean Coast Manag 102:522–532

    Article  Google Scholar 

  • Horowitz A, Atlas RM (1977) Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Appl Environ Microbiol 33:647–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Evol Microbiol 49:367–375

    CAS  Google Scholar 

  • Inakollu S, Hung HC, Shreve GS (2004) Biosurfactant enhancement of microbial degradation of various structural classes of hydrocarbon in mixed waste systems. Environ Eng Sci 21:463–469

    Article  CAS  Google Scholar 

  • Jackson A, Pardue JH (1997) Seasonal variability of crude oil respiration potential in salt and fresh marshes. J Environ Qual 26(4):1140–1146

    Article  CAS  Google Scholar 

  • Jannasch HW (1967) Growth of marine Bacteria at limiting concentrations of organic carbon in Seawater1. Limnol Oceanogr 12:264–271

    Article  CAS  Google Scholar 

  • Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Yu G, Li Y, Cao G, Yang Z, Sheng W, Yu W (2012) Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan plateau explains plant adaptation to nutrient-poor environment. Ecol Eng 44:1–9

    Article  Google Scholar 

  • Jobson A, Cook FD, Westlake DWS (1972) Microbial utilization of crude oil. Appl Microbiol 23:1082–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • John RC, Okpokwasili GC (2012) Crude oil-degradation and plasmid profile of nitrifying Bacteria isolated from oil-impacted mangrove sediment in the Niger Delta of Nigeria. Bull Environ Contam Toxicol 88:1020–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadri T, Magdouli S, Rouissi T, Brar SK (2018) Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochem Eng J 132:279–287

    Article  CAS  Google Scholar 

  • Kanekar PP, Sarnaik SS, Kelkar AS (1998) Bioremediation of phenol by alkaliphilic bacteria isolated from alkaline lake of Lonar, India. J Appl Microbiol 85:128S–133S

    Article  PubMed  Google Scholar 

  • Kapley A, Purohit HJ, Chhatre S, Shanker R, Chakrabarti T, Khanna P (1999) Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium. Bioresour Technol 67:241–245

    Article  CAS  Google Scholar 

  • Kappen L, Sommerkorn M, Schroeter B (1995) Carbon acquisition and water relations of lichens in polar regions – potentials and limitations. Lichenologist 27:531–545

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala VR, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4:241–249

    Article  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315

    Article  Google Scholar 

  • Kerr RP, Capone DG (1988) The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Mar Environ Res 26:181–198

    Article  CAS  Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2007) Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75(3):521

    Article  CAS  PubMed  Google Scholar 

  • Kosek K, Polkowska Ż, Żyszka B, Lipok J (2016) Phytoplankton communities of polar regions-diversity depending on environmental conditions and chemical anthropopressure. J Environ Manag 171:243–259

    Article  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading Bacteria and the bacterial community response in Gulf of Mexico Beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumholz LR, Sharp R, Fishbain SS (1996) A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushner DJ (1978) Microbial life in extreme environments. Academic Press, London

    Google Scholar 

  • Kuwayama Y, Olmstead SM, Krupnick A (2013) Water resources and unconventional fossil fuel development: linking physical impacts to social costs. Social Science Research Network, Rochester

    Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  CAS  PubMed  Google Scholar 

  • Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38

    Article  PubMed  Google Scholar 

  • Langenbach T (2013) Persistence and bioaccumulation of persistent organic pollutants (POPs). In: Patil YB, Rao P (eds) Agricultural and biological sciences; applied bioremediation- active and passive approaches, pp 223-229. ISBN 978-953-51-1200-6

    Google Scholar 

  • Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22

    Google Scholar 

  • L’haridon S, Reysenbacht AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377(6546):223

    Article  Google Scholar 

  • Li X, Zhao Q, Wang X, Li Y, Zhou Q (2018) Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons. J Hazard Mater 344:23–32

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Gardner DR, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 72:7821–7828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Yang B, Shen J, Du N (2009) Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Curr Microbiol 59:341–345

    Article  CAS  PubMed  Google Scholar 

  • Logeshwaran P, Megharaj M, Chadalavada S, Bowman M, Naidu R (2018) Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ Technol Innov 10:175–193

    Article  Google Scholar 

  • Lu Z, Zeng F, Xue N, Li F (2012) Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Sci Total Environ 433:50–57

    Article  CAS  PubMed  Google Scholar 

  • Ludzack FL, Kinkead D (1956) Persistence of oily wastes in polluted water under aerobic conditions. Ind Eng Chem 48:263–267

    Article  CAS  Google Scholar 

  • Lundstedt S (2003) Analysis of PAHs and their transformations products in contaminated soil and remedial processes

    Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  • Maiangwa J, Ali MSM, Salleh AB, Rahman RNZRA, Shariff FM, Leow TC (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19:235–247

    Article  CAS  PubMed  Google Scholar 

  • Maier RM (2000) Bioavailability and its importance to bioremediation. In: Bioremediation. Springer, Dordrecht, pp 59–78

    Chapter  Google Scholar 

  • Maier RM, Gentry TJ (2015) Chapter 17: microorganisms and organic pollutants. In: Environmental microbiology, 3rd edn. Academic Press, San Diego, pp 377–413

    Chapter  Google Scholar 

  • Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  • Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B (2018) Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J 12:1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maila MP, Cloete TE (2004) Bioremediation of petroleum hydrocarbons through landfarming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Biotechnol 3:349–360

    Article  CAS  Google Scholar 

  • Maltseva O, Oriel P (1997) Monitoring of an alkaline 2,4,6-Trichlorophenol-degrading enrichment culture by DNA fingerprinting methods and isolation of the responsible organism, Haloalkaliphilic Nocardioides sp. strain M6. Appl Environ Microbiol 63:4145–4149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35:860–870

    Article  CAS  PubMed  Google Scholar 

  • Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted alpine soils. Int Biodeterior Biodegrad 46:3–10

    Article  CAS  Google Scholar 

  • Margesin R (2017) Psychrophiles: from biodiversity to biotechnology. Springer, Cham

    Book  Google Scholar 

  • Margesin R, Schinner F (1999) Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate. Chemosphere 38:3463–3472

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals – fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  CAS  PubMed  Google Scholar 

  • Martínez Álvarez L, Ruberto L, Lo Balbo A, Mac Cormack W (2017) Bioremediation of hydrocarbon-contaminated soils in cold regions: development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Sci Total Environ 590–591:194–203

    Article  CAS  PubMed  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras Salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15(10):1325–1335

    Google Scholar 

  • Mirete S, Mora-Ruiz MR, Lamprecht-Grandío M, de Figueras CG, Rosselló-Móra R, González-Pastor JE (2015) Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol 6:1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Minai TD, Minoui S, Herfatmanesh A (2012) Effect of salinity on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) of heavy crude oil in soil. Bull Environ Contam Toxicol 82:179–184

    Article  CAS  Google Scholar 

  • Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794

    Article  CAS  PubMed  Google Scholar 

  • Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol 111:525–536

    Article  CAS  PubMed  Google Scholar 

  • Mohn W, Radziminski C, Fortin MC, Reimer K (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247

    Article  CAS  PubMed  Google Scholar 

  • Moreno R, Rojo F (2014) Features of pseudomonads growing at low temperatures: another facet of their versatility. Environ Microbiol Rep 6:417–426

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. In: Advances in microbial ecology. Springer, Boston, pp 171–198

    Chapter  Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactant products. Indian Natl Sci Acad 1:31–55

    Google Scholar 

  • Mykytczuk NCS, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:ismej20138

    Google Scholar 

  • Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31

    Article  CAS  PubMed  Google Scholar 

  • Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L et al (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Fang H, Li Y, Chi CQ, Tang YQ, Wu XL (2013) The genome of the moderate halophile Amycolicicoccus subflavus DQS3-9A1T reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment. PLoS One 8:e70986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nievas ML, Commendatore MG, Esteves JL, Bucalá V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Mater 154:96–104

    Article  CAS  PubMed  Google Scholar 

  • Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol 32:617–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novitsky JA, Morita RY (1977) Survival of a psychrophilic marine Vibrio under long-term nutrient starvation. Appl Environ Microbiol 33:635–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novitsky JA, Morita RY (1978) Possible strategy for the survival of marine bacteria under starvation conditions. Mar Biol 48:289–295

    Article  Google Scholar 

  • Nwinyi OC, Olawore YA (2017) Biostimulation of spent engine oil contaminated soil using Ananas comosus and Solanum tuberosum peels. Environ Technol Innov 8:373–388

    Article  Google Scholar 

  • Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2009) Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microbiol Biotechnol 25:1615–1623

    Article  CAS  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren DA (2011) Diversity of halophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 309–325

    Chapter  Google Scholar 

  • Oren A (2013) Life at high salt concentrations. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes – prokaryotic communities and ecophysiology. Springer-Verlag, Berlin/Heidelberg, pp 421–440. https://doi.org/10.1007/978-3-642-30123-0_57

    Chapter  Google Scholar 

  • Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3(2–3):387–398

    Article  CAS  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Calvo JJ, Tejeda-Agredano MC, Jimenez-Sanchez C, Congiu E, Sungthong R, Niqui-Arroyo JL, Cantos M (2013) Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? J Hazard Mater 261:733–745

    Article  CAS  PubMed  Google Scholar 

  • Oudot J (1984) Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar Environ Res 13:277–302

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantsyrnaya T, Blanchard F, Delaunay S, Goergen JL, Guédon E, Guseva E, Boudrant J (2011) Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media. Chemosphere 83:29–33

    Article  CAS  PubMed  Google Scholar 

  • Patil Y, Rao P (2014) Applied bioremediation – active and passive approaches. Social Science Research Network, Rochester

    Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic Press, London

    Google Scholar 

  • Peeples TL (2014) Chapter 10: bioremediation using extremophiles. In: Das S (ed) Microbial biodegradation and bioremediation. Oxford, Elsevier, pp 251–268

    Chapter  Google Scholar 

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011:475193

    Google Scholar 

  • Pernetti M, Palma LD (2005) Experimental evaluation of inhibition effects of saline wastewater on activated sludge. Environ Technol 26:695–704

    Article  CAS  PubMed  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19

    Article  CAS  PubMed  Google Scholar 

  • Polak J, Lu BCY (1973) Mutual Solubilities of hydrocarbons and water at 0 and 25 °C. Can J Chem 51:4018–4023

    Article  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieur D, Marteinsson VT (1998) Prokaryotes living under elevated hydrostatic pressure. In: Biotechnology of extremophiles. Springer, Berlin/Heidelberg, pp 23–35

    Chapter  Google Scholar 

  • Prince RC (2010) Bioremediation of marine oil spills. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2617–2630

    Chapter  Google Scholar 

  • Prince RC, Walters CC (2016) Chapter 19: biodegradation of oil hydrocarbons and its implications for source identification. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, 2nd edn. Academic Press, Boston, pp 869–916

    Chapter  Google Scholar 

  • Prince RC, Gramain A, McGenity TJ (2010) Prokaryotic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1669–1692

    Chapter  Google Scholar 

  • Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217

    Article  CAS  PubMed  Google Scholar 

  • Radwan SS, Sorkhoh NA, Fardoun F, Al-Hasan RH (1995) Soil management enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. Appl Microbiol Biotechnol 44:265–270

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Rahman TJ, Lakshmanaperumalsamy P, Marchant R, Banat IM (2003) The potential of bacterial isolates for emulsification with a range of hydrocarbons. Acta Biotechnol 23:335–345

    Article  CAS  Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life Open Access J 3:482–485

    Google Scholar 

  • Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115: 491–503

    Google Scholar 

  • Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983

    Article  CAS  PubMed  Google Scholar 

  • Rhykerd RL, Weaver RW, McInnes KJ (1995) Influence of salinity on bioremediation of oil in soil. Environ Pollut 90:127–130

    Article  CAS  PubMed  Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721

    Article  CAS  PubMed  Google Scholar 

  • Rike AG, Haugen KB, Børresen M, Engene B, Kolstad P (2003) In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Technol 37(2):97–120

    Article  Google Scholar 

  • Romaní AM, Chauvet E, Febria C, Mora-Gómez J, Risse-Buhl U, Timoner X, Weitere M, Zeglin L (2017) Chapter 4.1: the biota of intermittent rivers and ephemeral streams: prokaryotes, fungi, and protozoans. In: Datry T, Bonada N, Boulton A (eds) Intermittent rivers and ephemeral streams. Academic Press, London, pp 161–188

    Chapter  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild LJ, Mancinelli R (2001) Life in extreme environments. Nature 409:35059215

    Article  CAS  Google Scholar 

  • Santini TC, Malcolm LI, Tyson GW, Warren LA (2016) pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue. Environ Sci Technol 50:11164–11173

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231

    Article  Google Scholar 

  • Schmidt TM, Schaechter M (2012) Topics in ecological and environmental microbiology. Academic Press, London

    Google Scholar 

  • Scoma A, Boon N (2016) Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2. Front Microbiol 7:729

    PubMed  PubMed Central  Google Scholar 

  • Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016a) Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:23526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoma A, Barbato M, Borin S, Daffonchio D, Boon N (2016b) An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep 6:31316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253

    Article  CAS  PubMed  Google Scholar 

  • Seckbach J, Oren A, Stan-Lotter H (2013) Polyextremophiles: life under multiple forms of stress. Springer, Dordrecht

    Book  Google Scholar 

  • Sexstone A, Atlas RM (1978) Persistence of oil in tundra soils [Includes textile manufacturing waste water, Alaska]. Dev Ind Microbiol USA

    Google Scholar 

  • Sexstone A, Everett K, Jenkins T, Atlas RM (1978) Fate of crude and refined oils in north slope soils. Arctic 31:339–347

    CAS  Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharm Life Sci 2(2):202–213

    Google Scholar 

  • Sherry A, Grant RJ, Aitken CM, Jones DM, Head IM, Gray ND (2014) Volatile hydrocarbons inhibit methanogenic crude oil degradation. Front Microbiol 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiaris MP (1989) Seasonal biotransformation of naphthalene, phenanthrene, and benzo[a]pyrene in surficial estuarine sediments. Appl Environ Microbiol 55:1391–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla SK, Mangwani N, Rao TS, Das S (2014) Chapter 8: biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In: Microbial biodegradation and bioremediation. Elsevier, Oxford, pp 203–232

    Chapter  Google Scholar 

  • Sierra-García IN, Alvarez JC, de Vasconcellos SP, de Souza AP, dos Santos Neto EV, de Oliveira VM (2014) New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 9:e90087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Book  Google Scholar 

  • Singer ME, Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Petroleum microbiology. Macmillan, New York, pp 1–59

    Google Scholar 

  • Singleton R, Amelunxen RE (1973) Proteins from thermophilic microorganisms. Bacteriol Rev 37:320–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smiles DE (1988) Aspects of the physical environment of soil organisms. Biol Fertil Soils 6:204–215

    Article  Google Scholar 

  • Smyth TJ, Perfumo A, Marchant R, Banat IM, Chen M, Thomas RK, Penfold J, Stevenson PS, Parry NJ (2010) Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Appl Microbiol Biotechnol 87:1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Speight JG, El-Gendy NS (2018a) Chapter 11: bioremediation of marine oil spills. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 419–470

    Chapter  Google Scholar 

  • Speight JG, El-Gendy NS (2018b) Chapter 1: petroleum composition and properties. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 1–39

    Google Scholar 

  • Speight JG, El-Gendy NS (2018c) Chapter 8: biotransformation in the environment. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 259–286

    Chapter  Google Scholar 

  • Speight JG, El-Gendy NS (2018d) Chapter 3: Introduction to petroleum biotechnology. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 69–101

    Chapter  Google Scholar 

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M et al (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365(6448):743

    Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O, Magot M (1996) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42:259–266

    Article  CAS  PubMed  Google Scholar 

  • Tong M, Yuan S (2012) Physiochemical technologies for HCB remediation and disposal: a review. J Hazard Mater 229–230:1–14

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvreås L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology, vol 13. Springer, Berlin/Heidelberg

    Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  PubMed  Google Scholar 

  • Ubalua AO (2011) Bioremediation strategies for oil polluted marine ecosystems. Aust J Agric Eng 2:160

    Google Scholar 

  • Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA, Allinor JI (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5:43

    Article  CAS  Google Scholar 

  • Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former Lake Texcoco (Mexico). Extremophiles 12:247–254

    Article  CAS  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Stempvoort D, Biggar K (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Reg Sci Technol 53:16–41

    Article  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  PubMed  Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372

    Article  CAS  PubMed  Google Scholar 

  • Vasco MF, Cepero MC, Restrepo S, Vives-Florez MJ (2011) Recovery of mitosporic fungi actively growing in soils after bacterial bioremediation of oily sludge and their potential for removing recalcitrant hydrocarbons. Int Biodeterior Biodegrad 65:649–655

    Article  CAS  Google Scholar 

  • Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soil. Environ Int 26:409–411

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic Bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR (1974) Microbial degradation of model petroleum at low temperatures. Microb Ecol 1:63–95

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jiang ZF, Wu XL (2007) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Chi CQ, Cai M, Lou ZY, Tang YQ, Zhi XY, Li WJ, Wu XL, Du X (2010) Amycolicicoccus subflavus gen. Nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 60:638–643

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Brock TD (1976) Environmental factors influencing the rate of hydrocarbon oxidation in temperate lakes. Appl Environ Microbiol 31(5):764–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Brock TD (1978) Anaerobic metabolism of hexadecane in sediments. Geomicrobiol J 1(1):1–9

    Article  CAS  Google Scholar 

  • Westlake DWS, Jobson AM, Cook FD (1978) In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Can J Microbiol 24:254–260

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse BG (1984) The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem 14:319–332

    Article  CAS  Google Scholar 

  • Whyte LG, Greer CW, Inniss WE (1996) Assessment of the biodegradation potential of psychrotrophic microorganisms. Can J Microbiol 42:99–106

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a Psychrotrophic Rhodococcussp. Appl Environ Microbiol 64:2578–2584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Bourbonnière L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Biomeridiation J 3(1):69–80

    Article  CAS  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the Hyperarid Core of the Atacama Desert. Astrobiology 6:415–422

    Article  PubMed  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Nicklin S, Faull JL (2002) Biodegradation of fuel oils and lubricants: soil and water bioremediation options. In: Ved Pal S, S Raymond D (eds) Progress in industrial microbiology. Elsevier, Amsterdam, pp 69–100

    Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249

    Article  CAS  PubMed  Google Scholar 

  • Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T et al (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U (VI) and geochemical control of U (VI) bioavailability. Environ Sci Technol 40(12):3986-3995

    Google Scholar 

  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts – life at the limit? In: The ecology of cyanobacteria. Springer, Dordrecht, pp 341–366

    Google Scholar 

  • Yakimov MM, Giuliano L, Bruni V, Scarfì S, Golyshin PN (1999) Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256

    CAS  PubMed  Google Scholar 

  • Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49:419–432

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lai CT, Shieh WK (2000) Biodegradation of dispersed diesel fuel under high salinity conditions. Water Res 34(13):3303–3314

    Article  CAS  Google Scholar 

  • Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ, Li XM, Yu SP (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19:371–381

    Article  CAS  Google Scholar 

  • Yang S, Wen X, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia crude oil pipeline route. PLoS One 9:e96552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zobell CE (1969) Microbial modification of crude oil in the sea. In: American Petroleum Institute, United States, Federal Water Pollution Control Administration (eds) Proceedings of the joint conference on prevention and control of oil spills. American Petroleum Institute, New York, pp 317–320

    Google Scholar 

  • Zobell CE (1973) Microbial degradation of oil: present status, problems and perspectives. In: Aheam DG, Meyer SP (eds) The microbial degradation of oil pollution. Center for Wetland Resources, Louisiana State University, Baton Rouge, pp 3–16

    Google Scholar 

  • Zumsteg A, Bååth E, Stierli B, Zeyer J, Frey B (2013) Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield. Soil Biol Biochem 61:121–132

    Article  CAS  Google Scholar 

  • Zvyagintseva IS, Poglazova MN, Gotoeva MT, Belyaev SS (2001) Effect on the medium salinity on oil degradation by Nocardioform Bacteria. Microbiology 70:652–656

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support of Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) (award grant number 148279/2017-1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alegbeleye, O.O. (2018). Petroleum Microbiology Under Extreme Conditions. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_18

Download citation

Publish with us

Policies and ethics