Skip to main content

Double Resonance Raman Spectroscopy of Two-Dimensional Materials

  • Chapter
  • First Online:
Book cover Raman Spectroscopy of Two-Dimensional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 276))

  • 3064 Accesses

Abstract

In this chapter, we overview double resonance Raman spectra of two dimensional materials. Many weak Raman spectral peaks are observed in the two dimensional materials which can be attributed to second order, double resonance Raman spectra. It is useful for material characterization to understand not only first order Raman spectra but also second order Raman spectra since the second order Raman spectra has more information on electronic structure of the materials than the first order Raman spectra. Combined with the conventional first order resonance Raman theory, we will explain why the double resonance condition can be strong in the two dimensional materials. Since the double resonance Raman spectra give the information of phonon with non-zero wavevectors in the Brillouin zone, both the resonant wavevector and corresponding Raman spectra can shift with changing the incident laser energy. Here we will discuss the physics of double resonance Raman spectra of graphene, transition metal dichalcogenides by theoretical analysis using the first principles calculation.

M. S. Dresselhaus (deceased, February, 2017)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Adv. Phys. 60, 413 (2011)

    Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)

    Google Scholar 

  3. R. Saito, A. Grüneis, G.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, C. Fantini, M.A. Pimenta, A.G. Souza Filho, New J. Phys. 5, 157.1 (2003)

    Google Scholar 

  4. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Google Scholar 

  5. A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, New J. Phys. 5, 139.1 (2003)

    Google Scholar 

  6. A. Grüneis, R. Saito, G.G. Samsonidze, T. Kimura, M.A. Pimenta, A. Jorio, A.G.S. Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 67, 165402 (2003)

    Google Scholar 

  7. J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 392, 383 (2004)

    Google Scholar 

  8. J. Jiang, R. Saito, G.G. Samsonidze, S.G. Chou, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 72, 235408 (2005)

    Google Scholar 

  9. L.V. Hove, Phys. Rev. 89, 1189 (1953)

    Google Scholar 

  10. H. Liu, H. Guo, T. Yang, Z. Zhang, Y. Kumamoto, C. Shen, Y. Hsu, R. Saito, S. Kawata, Phys. Chem. Chem. Phys. 17, 14561 (2015)

    Google Scholar 

  11. R. Saito, A.R.T. Nugraha, E.H. Hasdeo, S. Siregar, H. Guo, T. Yang, Phys. Status Solidi B 252, 2363 (2015)

    Google Scholar 

  12. R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002)

    Google Scholar 

  13. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, et al., J. Phys. Condensed Matter 21(39), 395502 (2009)

    Google Scholar 

  14. F. Aryasetiawan, O. Gunnarsson, Reports on Progress in Physics 61(3), 237 (1998)

    Google Scholar 

  15. S. Albrecht, L. Reining, R. Del Sole, G. Onida, Phys. Rev. Lett. 80, 4510 (1998)

    Google Scholar 

  16. M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998)

    Google Scholar 

  17. J. Jiang, R. Saito, G.G. Samsonidze, A. Jorio, S.G. Chou, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 75, 035407 (2007)

    Google Scholar 

  18. J. Jiang, R. Saito, K. Sato, J.S. Park, G.G. Samsonidze, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 75, 035405 (2007)

    Google Scholar 

  19. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Google Scholar 

  20. R. Saito, Y. Tatsumi, S. Huang, X. Ling, M.S. Dresselhaus, J. Phys. Cond. Matt. 28(35), 353002 (2016)

    Google Scholar 

  21. P. Ayria, A.R.T. Nugraha, E.H. Hasdeo, T.R. Czank, S. Tanaka, R. Saito, Phys. Rev. B 92, 195148 (2015)

    Google Scholar 

  22. J. Noffsinger, F. Giustino, B.D. Malone, C.H. Park, S.G. Louie, M.L. Cohen, Comput. Phys. Commun. 181, 2140 (2010)

    Google Scholar 

  23. A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH Verlag GmbH & Co KGaA, WeinHeim, Germany, 2010)

    Google Scholar 

  24. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Google Scholar 

  25. C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)

    Google Scholar 

  26. J.S. Park, A. Reina Cecco, R. Saito, J. Jiang, G. Dresselhaus, M.S. Dresselhaus, Carbon 47, 1303 (2009)

    Google Scholar 

  27. L.G. Cançado, M.A. Pimenta, R. Saito, A. Jorio, L.O. Ladeira, A. Grüneis, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 66, 035415 (2002)

    Google Scholar 

  28. P.H. Tan, C.Y. Hu, J. Dong, W.C. Shen, B.F. Zhang, Phys. Rev. B 64, 214301 (2001)

    Google Scholar 

  29. J. Maultzsch, S. Reich, C. Thomsen, Phys. Rev. B 70, 155403 (2004)

    Google Scholar 

  30. C. Cong, T. Yu, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, ACS Nano 5, 1600 (2011)

    Google Scholar 

  31. V.W. Brar, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, R. Saito, A.K. Swan, M.S. Ünlü, B.B. Goldberg, A.G. Souza Filho, A. Jorio, Phys. Rev. B 66, 155418 (2002)

    Google Scholar 

  32. L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Phys. Rev. B 76, 201401 (2007)

    Google Scholar 

  33. P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A.C. Ferrari, Nat. Mater. 11(4), 294 (2012)

    Google Scholar 

  34. P.H. Tan, J.B. Wu, W.P. Han, W.J. Zhao, X. Zhang, H. Wang, Y.F. Wang, Phys. Rev. B 89, 235404 (2014)

    Google Scholar 

  35. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Google Scholar 

  36. K.A.N. Duerloo, Y. Li, E.J. Reed, Nat. Commun. 5, 5214 (2014)

    Google Scholar 

  37. C. Ruppert, O.B. Aslan, T.F. Heinz, Nano Lett. 14(11), 6231 (2014)

    Google Scholar 

  38. N.R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.H. Moon, H. Terrones, M. Terrones, L. Balicas, ACS Nano 8(6), 5911 (2014)

    Google Scholar 

  39. M. Yamamoto, S.T. Wang, M.Y. Ni, Y.F. Lin, S.L. Li, S. Aikawa, W.B. Jian, K. Ueno, K. Wakabayashi, K. Tsukagoshi, ACS Nano 8(4), 3895 (2014)

    Google Scholar 

  40. H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa, K. Ueno, K. Tsukagoshi, Z. Zhang, M. Dresselhaus, R. Saito, Phys. Rev. B 91, 205415 (2015)

    Google Scholar 

  41. S.Y. Chen, T. Goldstein, D. Venkataraman, A. Ramasubramaniam, J. Yan, Nano Lett. 16(9), 5852 (2016)

    Google Scholar 

  42. K.F. Mak, J. Shan, T.F. Heinz, Phys. Rev. Lett. 104, 176404 (2010)

    Google Scholar 

  43. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10(4), 1271 (2010)

    Google Scholar 

  44. M.A. Pimenta, E. del Corro, B.R. Carvalho, C. Fantini, L.M. Malard, Acc. Chem. Res. 48(1), 41 (2014)

    Google Scholar 

  45. B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, J. Raman Spectrosc. 44, 92 (2013)

    Google Scholar 

  46. A. Kumar, P. Ahluwalia, Eur. Phys. J. B 85(6), 186 (2012)

    Google Scholar 

  47. Y. Ding, Y.L. Wang, J. Ni, L. Shi, S.Q. Shi, W.H. Tang, Physica B Condensed Matter 406(11), 2254 (2011)

    Google Scholar 

  48. D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    Google Scholar 

  49. Y. Cheng, U. Schwingenschl\(\ddot {o}\)gl, MoS 2: A First-Principles Perspective (Ed. Zhiming M. Wang, Springer, Berlin, 2014)

    Google Scholar 

  50. D.Y. Qiu, F.H. da Jornada, S.G. Louie, Phys. Rev. Lett. 111, 216805 (2013)

    Google Scholar 

  51. H.L. Liu, C.C. Shen, S.H. Su, C.L. Hsu, M.Y. Li, L.J. Li, Appl. Phys. Lett. 105(20), 201905 (2014)

    Google Scholar 

  52. J.W. Park, H.S. So, S. Kim, S.H. Choi, H. Lee, J. Lee, C. Lee, Y. Kim, J. Appl. Phys. 116(18), 183509 (2014)

    Google Scholar 

  53. Y. Tatsumi, K. Ghalamkari, R. Saito, Phys. Rev. B 94, 235408 (2016)

    Google Scholar 

  54. C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. Dresselhaus, M.S. Dresselhaus, ACS Nano 5, 8760 (2011)

    Google Scholar 

  55. P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84, 035433 (2011)

    Google Scholar 

  56. Z.Y. Zhu, Y.C. Cheng, U. Schwingenschl\(\ddot {o}\)gl, Phys. Rev. B 84, 153402 (2011)

    Google Scholar 

  57. X. Ling, S. Huang, E.H. Hasdeo, L. Liang, W.M. Parkin, Y. Tatsumi, A.R.T. Nugraha, A.A. Puretzky, P.M. Das, B.G. Sumpter, D.B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, M.S. Dresselhaus, Nano Lett. 16(0), 2260 (2016)

    Google Scholar 

  58. S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A.A. Puretzky, D.B. Geohegan, J. Kong, J. Li, T. Yang, R. Saito, M.S. Dresselhaus, ACS Nano 10(9), 8964 (2016)

    Google Scholar 

  59. L. Zhou, S. Huang, Y. Tatsumi, L. Wu, H. Guo, Y. Bie, K. Ueno, T. Yang, Y. Zhu, J. Kong, R. Saito, M.S. Dresselhaus, J. Am. Chem. Soc. (2017)

    Google Scholar 

  60. P. Ayria, S. Tanaka, A.R.T. Nugraha, M.S. Dresselhaus, R. Saito, Phys. Rev. B. 94, 075429 (2016)

    Google Scholar 

Download references

Acknowledgements

All authors sincerely acknowledge Professor Mildred S. Dresselhaus who passed away on February 20th, 2017, before finishing this article. We all thank her for supervising us Raman spectroscopy of nano carbons and 2D materials. R.S. acknowledges JSPS KAKENHI Grant Numbers JP25286005, JP225107005, JP15K21722 and JP18H01810. T.Y. acknowledges the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (No. U1537204) and National Basic Research Program (No.2017YFA0206301) of China. H.H.G. acknowledges the support by the Liaoning Province Doctor Startup Fund (Grant 201601325) and Liaoning Shihua University Grant 2016XJJ-044. S.H. and L.Z. acknowledge financial support by STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319, EFRI 2-DARE(EFMA-1542815), NSF grant DMR-1507806, and the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies (Grant No. 023674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, R. et al. (2019). Double Resonance Raman Spectroscopy of Two-Dimensional Materials. In: Tan, PH. (eds) Raman Spectroscopy of Two-Dimensional Materials. Springer Series in Materials Science, vol 276. Springer, Singapore. https://doi.org/10.1007/978-981-13-1828-3_7

Download citation

Publish with us

Policies and ethics