Skip to main content

Raman Spectroscopy of Anisotropic Two-Dimensional Materials

  • Chapter
  • First Online:
Raman Spectroscopy of Two-Dimensional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 276))

Abstract

Due to the in-plane structural anisotropy, two-dimensional (2D) layered materials with low symmetry exhibit unique crystalline-axis dependent properties, including the optical, mechanical and electrical properties. Raman spectroscopy, in particular, polarized Raman spectroscopy, has been used as a rapid and non-invasive technique to study the composition, structure and symmetry of 2D anisotropic layered materials. In this chapter, the recent advances on the Raman spectroscopic studies of anisotropic 2D materials are summarized. The Raman selection rules and the structural symmetry will be discussed, followed by the overview of the polarized Raman scattering studies of anisotropic 2D materials cataloged by crystal symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Google Scholar 

  2. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932–934 (2007). https://doi.org/10.1126/science.1144216

    Google Scholar 

  3. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279

    Google Scholar 

  4. H.O.H. Churchill, P. Jarillo-Herrero, Two-dimensional crystals: Phosphorus joins the family. Nat. Nanotechnol. 9(5), 330–331 (2014). https://doi.org/10.1038/nnano.2014.85

    Google Scholar 

  5. L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou, H. Wu, D.L. Feng, X.H. Chen, Y.B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol.. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35

    Google Scholar 

  6. L. Meng, Y.L. Wang, L.Z. Zhang, S.X. Du, R.T. Wu, L.F. Li, Y. Zhang, G. Li, H.T. Zhou, W.A. Hofer, H.J. Gao, Buckled silicene formation on Ir(111). Nano Lett.. 13(2), 685–690 (2013). https://doi.org/10.1021/nl304347w

    Google Scholar 

  7. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett.. 108(24), 245501 (2012). https://doi.org/10.1103/PhysRevLett.108.245501

    Google Scholar 

  8. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett.. 108(15), 155501 (2012). https://doi.org/10.1103/PhysRevLett.108.155501

    Google Scholar 

  9. L.F. Li, S.Z. Lu, J.B. Pan, Z.H. Qin, Y.Q. Wang, Y.L. Wang, G.Y. Cao, S.X. Du, H.J. Gao, Buckled germanene formation on Pt(111). Adv. Mater.. 26(28), 4820–4824 (2014). https://doi.org/10.1002/adma.201400909

    Google Scholar 

  10. Q.L. Feng, Y.M. Zhu, J.H. Hong, M. Zhang, W.J. Duan, N.N. Mao, J.X. Wu, H. Xu, F.L. Dong, F. Lin, C.H. Jin, C.M. Wang, J. Zhang, L.M. Xie, Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv. Mater. 26(17), 2648–2653 (2014). https://doi.org/10.1002/adma.201306095

    Google Scholar 

  11. D.O. Dumcenco, K.Y. Chen, Y.P. Wang, Y.S. Huang, K.K. Tiong, Raman study of 2H-Mo1-xWxS2 layered mixed crystals. J. Alloys Compd. 506(2), 940–943 (2010). https://doi.org/10.1016/j.jallcom.2010.07.120

    Google Scholar 

  12. M. Zhang, J.X. Wu, Y.M. Zhu, D.O. Dumcenco, J.H. Hong, N.N. Mao, S.B. Deng, Y.F. Chen, Y.L. Yang, C.H. Jin, S.H. Chaki, Y.S. Huang, J. Zhang, L.M. Xie, Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8(7), 7130–7137 (2014). https://doi.org/10.1021/nn5020566

    Google Scholar 

  13. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937

    Google Scholar 

  14. Z.H. Ni, Y.Y. Wang, T. Yu, Z.X. Shen, Raman spectroscopy and imaging of graphene. Nano Res. 1(4), 273–291 (2008). https://doi.org/10.1007/s12274-008-8036-1

    Google Scholar 

  15. J.M.B.L. dos Santos, N.M.R. Peres, A.H. Castro, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99(25), 256802 (2007). https://doi.org/10.1103/PhysRevLett.99.256802

    Google Scholar 

  16. J.G. He, K. Hummer, C. Franchini, Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89(7), 075409 (2014). https://doi.org/10.1103/PhysRevB.89.075409

    Google Scholar 

  17. S.X. Yang, J. Kang, Q. Yue, K. Yao, Vapor phase growth and imaging stacking order of bilayer molybdenum disulfide. J. Phys. Chem. C 118(17), 9203–9208 (2014). https://doi.org/10.1021/jp500050r

    Google Scholar 

  18. Y.L. Wang, C.X. Cong, C.Y. Qiu, T. Yu, Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9(17), 2857–2861 (2013). https://doi.org/10.1002/smll.201202876

    Google Scholar 

  19. F.N. Xia, H. Wang, Y.C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458

    Google Scholar 

  20. N.N. Mao, J.X. Wu, B.W. Han, J.J. Lin, L.M. Tong, J. Zhang, Birefringence-directed Raman selection rules in 2D black phosphorus crystals. Small 12(19), 2627–2633 (2016). https://doi.org/10.1002/smll.201600295

    Google Scholar 

  21. J.X. Wu, N.N. Mao, L.M. Xie, H. Xu, J. Zhang, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem.Int. Ed 54(8), 2366–2369 (2015). https://doi.org/10.1002/anie.201410108

    Google Scholar 

  22. X.M. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y.C. Jia, H. Zhao, H. Wang, L. Yang, X.D. Xu, F.N. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015). https://doi.org/10.1038/nnano.2015.71

    Google Scholar 

  23. R.X. Fei, L. Yang, Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 105, 083120 (2014). https://doi.org/10.1063/1.4894273

    Google Scholar 

  24. Y.L. Wang, C.X. Cong, R.X. Fei, W.H. Yang, Y. Chen, B.C. Cao, L. Yang, T. Yu, Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 8(12), 3944–3953 (2015). https://doi.org/10.1007/s12274-015-0895-7

    Google Scholar 

  25. T. Hong, B. Chamlagain, W.Z. Lin, H.J. Chuang, M.H. Pan, Z.X. Zhou, Y.Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6(15), 8978–8983 (2014). https://doi.org/10.1039/c4nr02164a

    Google Scholar 

  26. J. Xia, X.Z. Li, X. Huang, N.N. Mao, D.D. Zhu, L. Wang, H. Xu, X.M. Meng, Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 8(4), 2063–2070 (2016). https://doi.org/10.1039/c5nr07675g

    Google Scholar 

  27. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014). https://doi.org/10.1038/nature13184

    Google Scholar 

  28. S.X. Huang, Y. Tatsumi, X. Ling, H.H. Guo, Z.Q. Wang, G. Watson, A.A. Puretzky, D.B. Geohegan, J. Kong, J. Li, T. Yang, R. Saito, M.S. Dresselhaus, In-plane optical anisotropy of layered gallium telluride. ACS Nano 10(9), 8964–8972 (2016). https://doi.org/10.1021/acsnano.6b05002

    Google Scholar 

  29. Z.X. Wang, K. Xu, Y.C. Li, X.Y. Zhan, M. Safdar, Q.S. Wang, F.M. Wang, J. He, Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano 8(5), 4859–4865 (2014). https://doi.org/10.1021/nn500782n

    Google Scholar 

  30. D.H. Keum, S. Cho, J.H. Kim, D.H. Choe, H.J. Sung, M. Kan, H. Kang, J.Y. Hwang, S.W. Kim, H. Yang, K.J. Chang, Y.H. Lee, Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11(6), 482–486 (2015). https://doi.org/10.1038/nphys3314

    Google Scholar 

  31. D.A. Chenet, O.B. Aslan, P.Y. Huang, C. Fan, A.M. van der Zande, T.F. Heinz, J.C. Hone, In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission Electron microscopy. Nano Lett. 15(9), 5667–5672 (2015). https://doi.org/10.1021/acs.nanolett.5b00910

    Google Scholar 

  32. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J.Y. Yan, D.F. Ogletree, S. Aloni, J. Ji, S.S. Li, J.B. Li, F.M. Peeters, J.Q. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014). https://doi.org/10.1038/ncomms4252

    Google Scholar 

  33. D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, S.J. Bending, Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano 8(11), 11154–11164 (2014). https://doi.org/10.1021/nn5053926

    Google Scholar 

  34. J.A. Yan, W.Y. Ruan, M.Y. Chou, Phonon dispersions and vibrational properties of monolayer, bilayer, and Trilayer graphene: density-functional perturbation theory. Phys. Rev. B 77(12), 125401 (2008). https://doi.org/10.1103/PhysRevB.77.125401

    Google Scholar 

  35. J.X. Wu, H. Xu, W.H. Mu, L.M. Xie, X. Ling, J. Kong, M.S. Dresselhaus, J. Zhang, Observation of low-frequency combination and overtone Raman modes in Misoriented graphene. J. Phys. Chem. C 118(7), 3636–3643 (2014). https://doi.org/10.1021/jp411573c

    Google Scholar 

  36. O.B. Aslan, D.A. Chenet, A.M. van der Zande, J.C. Hone, T.F. Heinz, Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 3(1), 96–101 (2016). https://doi.org/10.1021/acsphotonics.5b00486

    Google Scholar 

  37. A. Lapinska, A. Taube, J. Judek, M. Zdrojek, Temperature evolution of phonon properties in few-layer black phosphorus. J. Phys. Chem. C 120(9), 5265–5270 (2016). https://doi.org/10.1021/acs.jpcc.6b01468

    Google Scholar 

  38. F. Ahmed, Y.D. Kim, M.S. Choi, X. Liu, D.S. Qu, Z. Yang, J.Y. Hu, I.P. Herman, J. Hone, W.J. Yoo, High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering. Adv. Funct. Mater. 27(4), 1604025 (2017). https://doi.org/10.1002/adfm.201604025

    Google Scholar 

  39. R. Loudon, The Raman effect in crystals. Adv. Phys. 50(7), 813–864 (2001). https://doi.org/10.1080/00018730110101395

    Google Scholar 

  40. J.B. Bates, A.S. Quist, Polarized Raman spectra of Beta-quartz. J. Chem. Phys. 56(4), 1528–1533 (1972). https://doi.org/10.1063/1.1677402

    Google Scholar 

  41. K. Khaliji, A. Fallahi, L. Martin-Moreno, T. Low, Tunable Plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials. Phys. Rev. B 95(20), 201401 (2017). https://doi.org/10.1103/PhysRevB.95.201401

    Google Scholar 

  42. C. Kranert, C. Sturm, R. Schmidt-Grund, M. Grundmann, Raman tensor formalism for optically anisotropic crystals. Phys. Rev. Lett. 116(12), 127401 (2016). https://doi.org/10.1103/PhysRevLett.116.127401

    Google Scholar 

  43. V. Tran, R. Soklaski, Y.F. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319

    Google Scholar 

  44. X. Ling, L.B. Liang, S.X. Huang, A.A. Puretzky, D.B. Geohegan, B.G. Sumpter, J. Kong, V. Meunier, M.S. Dresselhaus, Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 15(6), 4080–4088 (2015). https://doi.org/10.1021/acs.nanolett.5b01117

    Google Scholar 

  45. X. Luo, X. Lu, G.K.W. Koon, A.H.C. Neto, B. Ozyilmaz, Q.H. Xiong, S.Y. Quek, Large frequency change with thickness in interlayer breathing mode-significant interlayer interactions in few layer black phosphorus. Nano Lett. 15(6), 3931–3938 (2015). https://doi.org/10.1021/acs.nanolett.5b00775

    Google Scholar 

  46. H.B. Ribeiro, C.E.P. Villegas, D.A. Bahamon, D. Muraca, A.H.C. Neto, E.A.T. de Souza, A.R. Rocha, M.A. Pimenta, C.J.S. de Matos, Edge phonons in black phosphorus. Nat. Commun. 7, 12191 (2016). https://doi.org/10.1038/ncomms12191

    Google Scholar 

  47. X. Ling, S.X. Huang, E.H. Hasdeo, L.B. Liang, W.M. Parkin, Y. Tatsumi, A.R.T. Nugraha, A.A. Puretzky, P.M. Das, B.G. Sumpter, D.B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, M.S. Dresselhaus, Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 16(4), 2260–2267 (2016). https://doi.org/10.1021/acs.nanolett.5b04540

    Google Scholar 

  48. J. Kim, J.U. Lee, J. Lee, H.J. Park, Z. Lee, C. Lee, H. Cheong, Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 7(44), 18708–18715 (2015). https://doi.org/10.1039/c5nr04349b

    Google Scholar 

  49. H.B. Ribeiro, M.A. Pimenta, C.J.S. de Matos, R.L. Moreira, A.S. Rodin, J.D. Zapata, E.A.T. de Souza, A.H.C. Neto, Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9(4), 4270–4276 (2015). https://doi.org/10.1021/acsnano.5b00698

    Google Scholar 

  50. Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014). https://doi.org/10.1063/1.4885215

    Google Scholar 

  51. E.S. Zouboulis, M. Grimsditch, Raman scattering in diamond up to 1900 K. Phys. Rev. B 43(15), 12490–12493 (1991). https://doi.org/10.1103/PhysRevB.43.12490

    Google Scholar 

  52. D.J. Late, Temperature dependent phonon shifts in few-layer black phosphorus. ACS Appl. Mater. Interfaces 7(10), 5857–5862 (2015). https://doi.org/10.1021/am509056b

    Google Scholar 

  53. G. Qiu, Y.C. Du, A. Charnas, H. Zhou, S.Y. Jin, Z. Luo, D.Y. Zemlyanov, X.F. Xu, G.J. Cheng, P.D.D. Ye, Observation of optical and electrical in-plane anisotropy in high-mobility few-layer ZrTe5. Nano Lett. 16(12), 7364–7369 (2016). https://doi.org/10.1021/acs.nanolett.6b02629

    Google Scholar 

  54. Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, F. Xiu, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nat. Commun. 7, 12516 (2016). https://doi.org/10.1038/ncomms12516

    Google Scholar 

  55. G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang, M. Tian, Transport evidence for the three-dimensional Dirac semimetal phase inZrTe5. Phys. Rev. B 93, 115414 (2016). https://doi.org/10.1103/PhysRevB.93.115414

  56. H. Weng, X. Dai, Z. Fang, Transition-metal PentatellurideZrTe5andHfTe5: a paradigm for large-gap quantum spin hall insulators. Phys. Rev. X 4, 011002 (2014). https://doi.org/10.1103/PhysRevX.4.011002

  57. R. Wu, J.Z. Ma, S.M. Nie, L.X. Zhao, X. Huang, J.X. Yin, B.B. Fu, P. Richard, G.F. Chen, Z. Fang, X. Dai, H.M. Weng, T. Qian, H. Ding, S.H. Pan, Evidence for topological edge states in a large energy gap near the step edges on the surface ofZrTe5. Phys. Rev. X 6, 021017 (2016). https://doi.org/10.1103/PhysRevX.6.021017

  58. M. Kim, S. Han, J.H. Kim, J.U. Lee, Z. Lee, H. Cheong, Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy. 2d Materials 3(3), 034004 (2016). https://doi.org/10.1088/2053-1583/3/3/034004

    Google Scholar 

  59. Q.J. Song, X.C. Pan, H.F. Wang, K. Zhang, Q.H. Tan, P. Li, Y. Wan, Y.L. Wang, X.L. Xu, M.L. Lin, X.G. Wan, F.Q. Song, L. Dai, The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep. 6, 29254 (2016). https://doi.org/10.1038/srep29254

    Google Scholar 

  60. X.L. Xu, Q.J. Song, H.F. Wang, P. Li, K. Zhang, Y.L. Wang, K. Yuan, Z.C. Yang, Y. Ye, L. Dai, In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 9(14), 12601–12607 (2017). https://doi.org/10.1021/acsami.7b00782

    Google Scholar 

  61. S.W. Luo, X. Qi, H. Yao, X.H. Ren, Q. Chen, J.X. Zhong, Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 121(8), 4674–4679 (2017). https://doi.org/10.1021/acs.jpcc.6b12059

    Google Scholar 

  62. Z. Tian, C.L. Guo, M.X. Zhao, R.R. Li, J.M. Xue, Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11(2), 2219–2226 (2017). https://doi.org/10.1021/acsnano.6b08704

    Google Scholar 

  63. D.Z. Tan, H.E. Lim, F.J. Wang, N.B. Mohamed, S. Mouri, W.J. Zhang, Y. Miyauchi, M. Ohfuchi, K. Matsuda, Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide. Nano Res. 10(2), 546–555 (2017). https://doi.org/10.1007/s12274-016-1312-6

    Google Scholar 

  64. Q.J. Song, Q.H. Tan, X. Zhang, J.B. Wu, B.W. Sheng, Y. Wan, X.Q. Wang, L. Dai, P.H. Tan, Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys. Rev. B 93(11), 115409 (2016). https://doi.org/10.1103/PhysRevB.93.115409

    Google Scholar 

  65. X.L. Ma, P.J. Guo, C.J. Yi, Q.H. Yu, A.M. Zhang, J.T. Ji, Y. Tian, F. Jin, Y.Y. Wang, K. Liu, T.L. Xia, Y.G. Shi, Q.M. Zhang, Raman scattering in the transition-metal dichalcogenides of 1T′-MoTe2, Td-MoTe2, and Td-WTe2. Phys. Rev. B 94(21), 214105 (2016). https://doi.org/10.1103/PhysRevB.94.214105

    Google Scholar 

  66. A. Jorio, M. Dresselhaus, R. Saito, G. Dresselhaus, Raman spectroscopy in graphene related systems (Wiley VCH, Weinheim, 2011)

    Google Scholar 

  67. W. Kong, C. Bacaksiz, B. Chen, K.D. Wu, M. Blei, X. Fan, Y.X. Shen, H. Sahin, D. Wright, D.S. Narang, S. Tongay, Angle resolved vibrational properties of anisotropic transition metal trichalcogenide nanosheets. Nanoscale 9(12), 4175–4182 (2017). https://doi.org/10.1039/c7nr00711f

    Google Scholar 

  68. R. Beams, L.G. Cancado, S. Krylyuk, I. Kalish, B. Kalanyan, A.K. Singh, K. Choudhary, A. Bruma, P.M. Vora, F. Tavazza, A.V. Da-Vydov, S.J. Stranick, Characterization of few-layer 1T′ MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 10(10), 9626–9636 (2016). https://doi.org/10.1021/acsnano.6b05127

    Google Scholar 

  69. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805

    Google Scholar 

  70. H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, MoS2 and WS2 analogues of graphene. Angew. Chem.Int..Ed 49(24), 4059–4062 (2010). https://doi.org/10.1002/anie.201000009

    Google Scholar 

  71. K. Friemelt, M.C. Luxsteiner, E. Bucher, Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der waals plane. J. Appl. Phys. 74(8), 5266–5268 (1993). https://doi.org/10.1063/1.354268

    Google Scholar 

  72. F.C. Liu, S.J. Zheng, X.X. He, A. Chaturvedi, J.F. He, W.L. Chow, T.R. Mion, X.L. Wang, J.D. Zhou, Q.D. Fu, H.J. Fan, B.K. Tay, L. Song, R.H. He, C. Kloc, P.M. Ajayan, Z. Liu, Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 26(8), 1169–1177 (2016). https://doi.org/10.1002/adfm.201504546

    Google Scholar 

  73. E.F. Liu, Y.J. Fu, Y.J. Wang, Y.Q. Feng, H.M. Liu, X.G. Wan, W. Zhou, B.G. Wang, L.B. Shao, C.H. Ho, Y.S. Huang, Z.Y. Cao, L.G. Wang, A.D. Li, J.W. Zeng, F.Q. Song, X.R. Wang, Y. Shi, H.T. Yuan, H.Y. Hwang, Y. Cui, F. Miao, D.Y. Xing, Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 6, 6991 (2015). https://doi.org/10.1038/ncomms7991

    Google Scholar 

  74. Y.Q. Feng, W. Zhou, Y.J. Wang, J. Zhou, E.F. Liu, Y.J. Fu, Z.H. Ni, X.L. Wu, H.T. Yuan, F. Miao, B.G. Wang, X.G. Wan, D.Y. Xing, Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B 92(5), 054110 (2015). https://doi.org/10.1103/PhysRevB.92.054110

    Google Scholar 

  75. R. He, J.A. Yan, Z.Y. Yin, Z.P. Ye, G.H. Ye, J. Cheng, J. Li, C.H. Lui, Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett. 16(2), 1404–1409 (2016). https://doi.org/10.1021/acs.nanolett.5b04925

    Google Scholar 

  76. E. Lorchat, G. Froehlicher, S. Berciaud, Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano 10(2), 2752–2760 (2016). https://doi.org/10.1021/acsnano.5b07844

    Google Scholar 

  77. X.F. Qiao, J.B. Wu, L.W. Zhou, J.S. Qiao, W. Shi, T. Chen, X. Zhang, J. Zhang, W. Ji, P.H. Tan, Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 8(15), 8324–8332 (2016). https://doi.org/10.1039/c6nr01569g

    Google Scholar 

  78. P. Nagler, G. Plechinger, C. Schuller, T. Korn, Observation of anisotropic interlayer Raman modes in few-layer ReS2. Phys. Status Solidi Rapid Res. Lett 10(2), 185–189 (2016). https://doi.org/10.1002/pssr.201510412

    Google Scholar 

  79. L. Hart, S. Dale, S. Hoye, J.L. Webb, D. Wolverson, Rhenium dichalcogenides: layered semiconductors with two vertical orientations. Nano Lett. 16(2), 1381–1386 (2016). https://doi.org/10.1021/acs.nanolett.5b04838

    Google Scholar 

  80. W. Wen, Y.M. Zhu, X.L. Liu, H.P. Hsu, Z. Fei, Y.F. Chen, X.S. Wang, M. Zhang, K.H. Lin, F.S. Huang, Y.P. Wang, Y.S. Huang, C.H. Ho, P.H. Tan, C.H. Jin, L.M. Xie, Anisotropic spectroscopy and electrical properties of 2D ReS2(1-x)Se2x alloys with distorted 1T structure. Small 13(12), 1603788 (2017). https://doi.org/10.1002/smll.201603788

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (2016YFA0200100 and 2015CB932400) and the National Natural Science Foundation of China (51432002, 51720105003, 21790052, 11374355 and 21573004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianming Tong or Jin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Zhang, S., Tong, L., Zhang, J. (2019). Raman Spectroscopy of Anisotropic Two-Dimensional Materials. In: Tan, PH. (eds) Raman Spectroscopy of Two-Dimensional Materials. Springer Series in Materials Science, vol 276. Springer, Singapore. https://doi.org/10.1007/978-981-13-1828-3_3

Download citation

Publish with us

Policies and ethics