Skip to main content

Raman Imaging of Two Dimensional Materials

  • Chapter
  • First Online:
Raman Spectroscopy of Two-Dimensional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 276))

  • 3025 Accesses

Abstract

Raman imaging is a powerful technique that can provide the spatial distribution of the properties of the micro-/nano- material. Different parameters of the Raman peaks, e.g. height/area, position, full width at half maximum (FWHM), and also ratios/differences between peaks, can be used to construct the Raman imaging and provide valuable information for the study of 2D materials and heterostructure. In this chapter, we will introduce the basic principle of Raman imaging, and also its application in the study of 2D materials, including the effects of thickness and stacking configurations, heterostructure and interlayer coupling, defects, strain. We will also show that Raman imaging is an ideal tool to study the growth mechanism of CVD graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Grüneis, C. Attaccalite, L. Wirtz, et al., Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B 78, 205425 (2008)

    Google Scholar 

  2. B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around theKpoint. Phys. Rev. B 74, 075404 (2006)

    Google Scholar 

  3. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Google Scholar 

  4. Y. Zhang, T.T. Tang, C. Girit, et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)

    Google Scholar 

  5. L. Liu, S.B. Kumar, Y. Ouyang, et al., Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011)

    Google Scholar 

  6. R. Coehoorn, C. Haas, J. Dijkstra, et al., Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35, 6195–6202 (1987)

    Google Scholar 

  7. A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011)

    Google Scholar 

  8. J. Yang, R. Xu, J. Pei, et al., Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015)

    Google Scholar 

  9. I. Brihuega, P. Mallet, H. Gonzalez-Herrero, et al., Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012)

    Google Scholar 

  10. W.Y. He, Z.D. Chu, L. He, Chiral tunneling in a twisted graphene bilayer. Phys. Rev. Lett. 111, 066803 (2013)

    Google Scholar 

  11. H. Schmidt, T. Lüdtke, P. Barthold, et al., Tunable graphene system with two decoupled monolayers. Appl. Phys. Lett. 93, 172108 (2008)

    Google Scholar 

  12. D. Xiao, G.-B. Liu, W. Feng, et al., Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Google Scholar 

  13. K.F. Mak, K. He, J. Shan, et al., Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)

    Google Scholar 

  14. Y. Chen, L. Meng, W. Zhao, et al., Raman mapping investigation of chemical vapor deposition-fabricated twisted bilayer graphene with irregular grains. Phys. Chem. Chem. Phys. 16, 21682–21687 (2014)

    Google Scholar 

  15. Z. Ni, H. Wang, J. Kasim, et al., Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)

    Google Scholar 

  16. Y. Wang, Z. Ni, Z. Shen, et al., Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 92, 043121 (2008)

    Google Scholar 

  17. Y. Hao, Y. Wang, L. Wang, et al., Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6, 195–200 (2010)

    Google Scholar 

  18. H. Li, Q. Zhang, C.C.R. Yap, et al., From Bulk to Monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)

    Google Scholar 

  19. Y. Liu, H. Nan, X. Wu, et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7, 4202–4209 (2013)

    Google Scholar 

  20. J.C. Shaw, H. Zhou, Y. Chen, et al., Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 7, 511–517 (2015)

    Google Scholar 

  21. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, et al., Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013)

    Google Scholar 

  22. Y. Lee, D. Tran, K. Myhro, et al., Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014)

    Google Scholar 

  23. W. Zhang, J. Yan, C.H. Chen, et al., Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene. Nat. Commun. 4, 2074 (2013)

    Google Scholar 

  24. J. Yan, J. Xia, X. Wang, et al., Stacking-dependent interlayer coupling in trilayer MoS(2) with broken inversion symmetry. Nano Lett. 15, 8155–8161 (2015)

    Google Scholar 

  25. M.-Y. Choi, Y.-H. Hyun, Y. Kim, Angle dependence of the Landau level spectrum in twisted bilayer graphene. Phys. Rev. B 84, 195437 (2011)

    Google Scholar 

  26. A. Luican, G. Li, A. Reina, et al., Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011)

    Google Scholar 

  27. Y. Wang, Z. Ni, L. Liu, et al., Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 4, 4074–4080 (2010)

    Google Scholar 

  28. W. Yan, M. Liu, R.F. Dou, et al., Angle-dependent van Hove singularities in a slightly twisted graphene bilayer. Phys. Rev. Lett. 109, 126801 (2012)

    Google Scholar 

  29. J. Hass, F. Varchon, J.-E. Millan-Otoya, et al., Why multilayer graphene on 4 H− SiC (000 1¯) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008)

    Google Scholar 

  30. A. Reina, X. Jia, J. Ho, et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008)

    Google Scholar 

  31. Z. Ni, Y. Wang, T. Yu, et al., Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 77, 235403 (2008)

    Google Scholar 

  32. K. Kim, S. Coh, L.Z. Tan, et al., Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012)

    Google Scholar 

  33. A.C. Ferrari, J. Meyer, V. Scardaci, et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Google Scholar 

  34. R.W. Havener, H. Zhuang, L. Brown, et al., Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012)

    Google Scholar 

  35. S. Coh, L.Z. Tan, S.G. Louie, et al., Theory of the Raman spectrum of rotated double-layer graphene. Phys. Rev. B 88, 165431 (2013)

    Google Scholar 

  36. C. Cong, T. Yu, K. Sato, et al., Raman characterization of ABA-and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)

    Google Scholar 

  37. C.H. Lui, Z. Li, Z. Chen, et al., Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011)

    Google Scholar 

  38. C. Cong, T. Yu, R. Saito, et al., Second-order overtone and combination Raman modes of graphene layers in the range of 1690−2150 cm−1. ACS Nano 5, 1600–1605 (2011)

    Google Scholar 

  39. J. Xia, J. Yan, Z.X. Shen, Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking. FlatChem 4, 1–19 (2017)

    Google Scholar 

  40. C. Dean, L. Wang, P. Maher, et al., Hofstadter’s butterfly in moire superlattices: A fractal quantum Hall effect. Nature 497, 598–602 (2013)

    Google Scholar 

  41. B. Hunt, J. Sanchez-Yamagishi, A. Young, et al., Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013)

    Google Scholar 

  42. M. Yankowitz, J. Xue, D. Cormode, et al., Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)

    Google Scholar 

  43. W.J. Yu, Y. Liu, H. Zhou, et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013)

    Google Scholar 

  44. O. Lopez-Sanchez, D. Lembke, M. Kayci, et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)

    Google Scholar 

  45. W. Zhang, C.P. Chuu, J.K. Huang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4, 3826 (2014)

    Google Scholar 

  46. A. Das, S. Pisana, B. Chakraborty, et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008)

    Google Scholar 

  47. Y. Gong, J. Lin, X. Wang, et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)

    Google Scholar 

  48. A.M. Van Der Zande, P.Y. Huang, D.A. Chenet, et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013)

    Google Scholar 

  49. S. Najmaei, Z. Liu, W. Zhou, et al., Vapor phase growth and grain boundary structure of molybdenum disulfide atomic layers. Nat. Mater. 12, 754–759 (2013)

    Google Scholar 

  50. H. Terrones, E. Del Corro, S. Feng, et al., New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 4, 4215 (2014)

    Google Scholar 

  51. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2010)

    Google Scholar 

  52. J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, et al., From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011)

    Google Scholar 

  53. J. Ma, D. Alfe, A. Michaelides, et al., Stone-Wales defects in graphene and other planar s p 2-bonded materials. Phys. Rev. B 80, 033407 (2009)

    Google Scholar 

  54. A.J. Stone, D.J. Wales, Theoretical studies of icosahedral C 60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)

    Google Scholar 

  55. J. Choi, H. Zhang, J.H. Choi, Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 10, 1671–1680 (2016)

    Google Scholar 

  56. O. Cretu, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, et al., Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 105, 196102 (2010)

    Google Scholar 

  57. S. Tongay, J. Zhou, C. Ataca, et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013)

    Google Scholar 

  58. Z.T. Wu, W.W. Zhao, W.Y. Chen, et al., The influence of chemical solvents on the properties of CVD graphene. J. Raman Spectrosc. 46, 21–24 (2015)

    Google Scholar 

  59. H. Qiu, T. Xu, Z. Wang, et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013)

    Google Scholar 

  60. W. Zhou, X. Zou, S. Najmaei, et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013)

    Google Scholar 

  61. L. Ci, L. Song, C. Jin, et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)

    Google Scholar 

  62. H.P. Komsa, J. Kotakoski, S. Kurasch, et al., Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012)

    Google Scholar 

  63. J. Lu, A. Carvalho, X.K. Chan, et al., Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 15, 3524–3532 (2015)

    Google Scholar 

  64. N. Nemec, D. Tomanek, G. Cuniberti, Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Phys. Rev. Lett. 96, 076802 (2006)

    Google Scholar 

  65. W. Bao, N.J. Borys, C. Ko, et al., Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 6, 7993 (2015)

    Google Scholar 

  66. P. Yasaei, B. Kumar, R. Hantehzadeh, et al., Chemical sensing with switchable transport channels in graphene grain boundaries. Nat. Commun. 5, 4911 (2014)

    Google Scholar 

  67. X. Zou, Y. Liu, B.I. Yakobson, Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2013)

    Google Scholar 

  68. D. Cao, T. Shen, P. Liang, et al., Role of chemical potential in flake shape and edge properties of monolayer MoS2. J. Phys. Chem. C 119, 4294–4301 (2015)

    Google Scholar 

  69. C. Cong, T. Yu, H. Wang, Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 4, 3175–3180 (2010)

    Google Scholar 

  70. B. Krauss, P. Nemes-Incze, V. Skakalova, et al., Raman scattering at pure graphene zigzag edges. Nano Lett. 10, 4544–4548 (2010)

    Google Scholar 

  71. Y. You, Z. Ni, T. Yu, et al., Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 93, 163112 (2008)

    Google Scholar 

  72. Z.H. Ni, H.M. Wang, Y. Ma, et al., Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2, 1033–1039 (2008)

    Google Scholar 

  73. Z. Zafar, Z.H. Ni, X. Wu, et al., Evolution of Raman spectra in nitrogen doped graphene. Carbon 61, 57–62 (2013)

    Google Scholar 

  74. Z. Luo, T. Yu, K.-J. Kim, et al., Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 3, 1781–1788 (2009)

    Google Scholar 

  75. L. Liu, S. Ryu, M.R. Tomasik, et al., Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008)

    Google Scholar 

  76. Q.H. Wang, Z. Jin, K.K. Kim, et al., Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 4, 724–732 (2012)

    Google Scholar 

  77. Y.N. Xu, D. Zhan, L. Liu, et al., Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy. ACS Nano 5, 147–152 (2010)

    Google Scholar 

  78. D. Zhan, L. Liu, Y.N. Xu, et al., Low temperature edge dynamics of AB-stacked bilayer graphene: naturally favored closed zigzag edges. Sci. Rep. 1, 12 (2011)

    Google Scholar 

  79. Q. Yu, L.A. Jauregui, W. Wu, et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011)

    Google Scholar 

  80. H. Nan, Z. Wang, W. Wang, et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014)

    Google Scholar 

  81. B. Chakraborty, A. Bera, D.V.S. Muthu, et al., Symmetry-dependent phonon renormalization in monolayer MoS2transistor. Phys. Rev. B 85, 161403 (2012)

    Google Scholar 

  82. N. Mao, Y. Chen, D. Liu, et al., Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 9, 1312–1315 (2013)

    Google Scholar 

  83. M. O’brien, N. Mcevoy, T. Hallam, et al., Transition metal dichalcogenide growth via close proximity precursor supply. Sci. Rep. 4, 7374 (2014)

    Google Scholar 

  84. G. Giovannetti, P.A. Khomyakov, G. Brocks, et al., Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initiodensity functional calculations. Phys. Rev. B 76, 073103 (2007)

    Google Scholar 

  85. R.M. Ribeiro, N.M.R. Peres, J. Coutinho, et al., Inducing energy gaps in monolayer and bilayer graphene: local density approximation calculations. Phys. Rev. B 78, 075442 (2008)

    Google Scholar 

  86. Z. Liu, M. Amani, S. Najmaei, et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014)

    Google Scholar 

  87. M. Huang, H. Yan, T.F. Heinz, et al., Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074–4079 (2010)

    Google Scholar 

  88. M. Mohr, J. Maultzsch, C. Thomsen, Splitting of the Raman2Dband of graphene subjected to strain. Phys. Rev. B 82, 201409 (2010)

    Google Scholar 

  89. Z.H. Ni, T. Yu, Y.H. Lu, et al., Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008)

    Google Scholar 

  90. A. Castellanos-Gomez, R. Roldan, E. Cappelluti, et al., Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013)

    Google Scholar 

  91. J.A. Robinson, C.P. Puls, N.E. Staley, et al., Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 9, 964–968 (2009)

    Google Scholar 

  92. Z.H. Ni, W. Chen, X.F. Fan, et al., Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 77, 200803 (2008)

    Google Scholar 

  93. J. Röhrl, M. Hundhausen, K.V. Emtsev, et al., Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008)

    Google Scholar 

  94. K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Google Scholar 

  95. L.G. De Arco, Y. Zhang, A. Kumar, et al., Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotechnol. 8, 135–138 (2009)

    Google Scholar 

  96. Y. Yu, Z. Li, W. Wang, et al., Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. J. Semicond. 38, 033003 (2017)

    Google Scholar 

  97. K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009)

    Google Scholar 

  98. X. Li, W. Cai, J. An, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Google Scholar 

  99. Q. Yu, J. Lian, S. Siriponglert, et al., Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008)

    Google Scholar 

  100. C. Berger, Z. Song, T. Li, et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Google Scholar 

  101. C. Berger, Z. Song, X. Li, et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Google Scholar 

  102. T. Ohta, A. Bostwick, T. Seyller, et al., Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)

    Google Scholar 

  103. S. Stankovich, D.A. Dikin, R.D. Piner, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Google Scholar 

  104. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Google Scholar 

  105. H. Wang, J.T. Robinson, X. Li, et al., Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131, 9910–9911 (2009)

    Google Scholar 

  106. Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)

    Google Scholar 

  107. X. Li, W. Cai, L. Colombo, et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009)

    Google Scholar 

  108. J. Shelton, H. Patil, J. Blakely, Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf. Sci. 43, 493–520 (1974)

    Google Scholar 

  109. L. Isett, J. Blakely, Segregation isosteres for carbon at the (100) surface of nickel. Surf. Sci. 58, 397–414 (1976)

    Google Scholar 

  110. M. Eizenberg, J. Blakely, Carbon monolayer phase condensation on Ni (111). Surf. Sci. 82, 228–236 (1979)

    Google Scholar 

  111. M. Eizenberg, J. Blakely, Carbon interaction with nickel surfaces: monolayer formation and structural stability. J. Chem. Phys. 71, 3467–3477 (1979)

    Google Scholar 

  112. X. Li, C.W. Magnuson, A. Venugopal, et al., Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010)

    Google Scholar 

  113. H. Bi, S. Sun, F. Huang, et al., Direct growth of few-layer graphene films on SiO2substrates and their photovoltaic applications. J. Mater. Chem. 22, 411–416 (2012)

    Google Scholar 

  114. J. Chen, Y. Wen, Y. Guo, et al., Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133, 17548–17551 (2011)

    Google Scholar 

  115. M.T. Cole, N. Lindvall, A. Yurgens, Noncatalytic chemical vapor deposition of graphene on high-temperature substrates for transparent electrodes. Appl. Phys. Lett. 100, 022102 (2012)

    Google Scholar 

  116. G. Hong, Q.-H. Wu, J. Ren, et al., Mechanism of non-metal catalytic growth of graphene on silicon. Appl. Phys. Lett. 100, 231604 (2012)

    Google Scholar 

  117. K.-B. Kim, C.-M. Lee, J. Choi, Catalyst-free direct growth of triangular nano-graphene on all substrates. J. Phys. Chem. C 115, 14488–14493 (2011)

    Google Scholar 

  118. N. Lindvall, M.T. Cole, T.J. Booth, et al., Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide. J. Appl. Phys. 111, 044103 (2012)

    Google Scholar 

  119. X. Li, C.W. Magnuson, A. Venugopal, et al., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011)

    Google Scholar 

  120. Y. Hao, L. Wang, Y. Liu, et al., Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0205700), NSFC (61774034), and the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDB30000000.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Ni or Zexiang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

An, X., Ni, Z., Shen, Z. (2019). Raman Imaging of Two Dimensional Materials. In: Tan, PH. (eds) Raman Spectroscopy of Two-Dimensional Materials. Springer Series in Materials Science, vol 276. Springer, Singapore. https://doi.org/10.1007/978-981-13-1828-3_11

Download citation

Publish with us

Policies and ethics