Skip to main content

A Framework for Multi-view Feature Selection via Embedding Space

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 875))

Included in the following conference series:

Abstract

Multi-view learning has drawn much attention in the past years to reveal the correlated and complemental information between different views. Feature selection for multi-view data is still a challenge in dimension reduction. Most of the multi-view feature selection methods simply concatenate all views together without capturing the information between different views. In this paper, we propose an embedding framework for multi-view feature selection, Embedding Space based Multi-view Feature Selection (ESMFS). ESMFS comes up with a new concept called mapping consensus to embed all views of data to a unified space. By preserving the manifold information, ESMFS captures the fusing views’ information. ESMFS is suitable for both supervised and unsupervised feature selection. For practical purpose, we propose two methods ES-LRFS and ES-MAFS to illustrate ESMFS framework. Experiments show that ES-LRFS and ES-MAFS are of inclusiveness and efficiency for multi-view feature selection, thus proving the feasibility of ESMFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

  2. 2.

    https://github.com/watersink/Corel5K.

References

  1. Long, B., Yu, P.S., Zhang, Z.: A general model for multiple view unsupervised learning. In: SIAM International Conference on Data Mining, SDM 2008, Atlanta, Georgia, USA, 24–26 April 2008, pp. 822–833 (2013)

    Google Scholar 

  2. Xia, T., Tao, D., Mei, T., Zhang, Y.: Multiview spectral embedding. IEEE Trans. Syst. Man Cybern. Part B 40(6), 1438–1446 (2010)

    Article  Google Scholar 

  3. Zhang, L., Zhang, Q., Zhang, L., Tao, D., Huang, X., Du, B.: Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recognit. 48(10), 3102–3112 (2015)

    Article  Google Scholar 

  4. Li, J., Wu, Y., Zhao, J., Lu, K.: Low-rank discriminant embedding for multiview learning. IEEE Trans. Cybern. 47(11), 3516 (2017)

    Article  Google Scholar 

  5. Wan, Y., Chen, X., Zhang, J.: Global and intrinsic geometric structure embedding for unsupervised feature selection. Expert Syst. Appl. (2017)

    Google Scholar 

  6. Wei, X., Cao, B., Yu, P.S.: Multi-view unsupervised feature selection by cross-diffused matrix alignment. In: International Joint Conference on Neural Networks (2017)

    Google Scholar 

  7. Feng, Y., Xiao, J., Zhuang, Y., Liu, X.: Adaptive unsupervised multi-view feature selection for visual concept recognition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 343–357. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_26

    Chapter  Google Scholar 

  8. Tang, J., Hu, X., Gao, H., Liu, H.: Unsupervised feature selection for multi-view data in social media (2013)

    Google Scholar 

  9. Qian, M., Zhai, C.: Unsupervised feature selection for multi-view clustering on text-image web news data. In: ACM International Conference on Conference on Information and Knowledge Management, pp. 1963–1966 (2014)

    Google Scholar 

  10. Zhang, T., Tao, D., Li, X., Yang, J.: Patch alignment for dimensionality reduction. IEEE Trans. Knowl. Data Eng. 21(9), 1299–1313 (2009)

    Article  Google Scholar 

  11. Du, L., Shen, Y.D.: Unsupervised feature selection with adaptive structure learning, vol. 37, no. 7, pp. 209–218 (2015)

    Google Scholar 

  12. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using nonnegative spectral analysis. In: , vol. 2, pp. 1026–1032 (2012)

    Google Scholar 

  13. Wei, X., Cao, B., Yu, P.S.: Nonlinear joint unsupervised feature selection. In: SIAM International Conference on Data Mining, pp. 414–422 (2016)

    Google Scholar 

  14. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: International Conference on Neural Information Processing Systems, pp. 507–514 (2006)

    Google Scholar 

  15. Kumar, A., Rai, P.: Co-regularized multi-view spectral clustering. In: International Conference on Neural Information Processing Systems, pp. 1413–1421 (2011)

    Google Scholar 

  16. Qian, M., Zhai, C.: Robust unsupervised feature selection. In: International Joint Conference on Artificial Intelligence, pp. 1621–1627 (2013)

    Google Scholar 

  17. Chen, X., Zhou, G., Chen, Y., Shao, G., Gu, Y.: Supervised multiview feature selection exploring homogeneity and heterogeneity with \(l_{1,2}\)-norm and automatic view generation. IEEE Trans. Geosci. Remote Sens. PP(99), 1–15 (2017)

    Google Scholar 

  18. Chen, X., Liu, W., Su, F., Zhou, G.: Semisupervised multiview feature selection for VHR remote sensing images with label learning and automatic view generation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP(99), 1–13 (2017)

    Google Scholar 

  19. Chen, X., Liu, W., Su, F., Shao, G.: Semi-supervised multiview feature selection with label learning for VHR remote sensing images. In: Geoscience and Remote Sensing Symposium, pp. 2372–2375 (2016)

    Google Scholar 

  20. Chen, X., Song, L., Hou, Y., Shao, G.: Efficient semi-supervised feature selection for VHR remote sensing images. In: Geoscience and Remote Sensing Symposium, pp. 1500–1503 (2016)

    Google Scholar 

  21. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323 (2000)

    Article  Google Scholar 

  22. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  23. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, no. 6 (2001)

    Google Scholar 

  24. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. U.S.A. 100(10), 5591 (2003)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Z.Y., Zha, H.Y.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Adv. Manuf. ) 8(4), 406–424 (2004)

    Google Scholar 

  26. Wang, T., Zhao, D., Tian, S.: An overview of kernel alignment and its applications. Artif. Intell. Rev. 43(2), 179–192 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the National Natural Science Foundation of China (No. 61573012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wan, Y., Pan, Y. (2018). A Framework for Multi-view Feature Selection via Embedding Space. In: Wang, Y., Jiang, Z., Peng, Y. (eds) Image and Graphics Technologies and Applications. IGTA 2018. Communications in Computer and Information Science, vol 875. Springer, Singapore. https://doi.org/10.1007/978-981-13-1702-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1702-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1701-9

  • Online ISBN: 978-981-13-1702-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics