Skip to main content

Deep Belief Network Based Vertebra Segmentation for CT Images

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 875))

Included in the following conference series:

Abstract

Automatic vertebra segmentation is a challenging task from CT images due to anatomically complexity, shape variation and vertebrae articulation with each other. Deep Learning is a machine learning paradigm that focuses on deep hierarchical learning modeling of input data. In this paper, we propose a novel approach of automatic vertebrae segmentation from computed tomography (CT) images by using deep belief networks (BDNs) modeling. Using the DBN model, the contexture features of vertebra from CT images are extracted automatically by an unsupervised pattern called pre-training and followed by supervised training called back-propagation algorithm; then segmentation the vertebra from other abdominal structure. To evaluate the performance, we computed the overall accuracy (94.2%), sensitivity (83.2%), specificity (94.8%) and mean Dice coefficients (0.85 ± 0.03) for segmentation evaluation. Experimental results show that our proposed model provides a more accuracy in vertebra segmentation compared to the previous state of art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kadoury, S., Labelle, H., Paragios, N.: Spine segmentation in medical images using manifold embeddings and higher-order MRFs. Med. Imaging IEEE Trans. 32(7), 1227–1238 (2013)

    Article  Google Scholar 

  2. Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. Med. Imaging IEEE Trans. 32(10), 1890–1900 (2013)

    Article  Google Scholar 

  3. Aslan, M.S., Farag, A.A., Arnold, B., Xiang, P.: Segmentation of vertebrae using level sets with expectation maximization algorithm. IEEE 2010–2013 (2011)

    Google Scholar 

  4. Ghosh, S., Alomari, R., Chaudhary, V., Dhillon G.: Automatic lumbar vertebrae segmentation from clinical CT for wedge compression fracture diagnosis. In: SPIE, pp. 1–9 (2011)

    Google Scholar 

  5. Narkhede, H.P.: Review of image segmentation techniques. Int. J. Sci. Mod. Eng. 2319–6386 (2013)

    Google Scholar 

  6. Aslan, M.S., Ali, A., Farag, A., Rara, A., Arnold, B., Xiang, P.: 3D vertebrae body segmentation using shape based graph cuts. In: IEEE ICPR, pp. 3951–3954 (2010)

    Google Scholar 

  7. Suzani, A., Rasoulian, A., Seitel, A., Fels, S., Rohling, R.N.: Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images, vol. 9415, pp. 1–7 (2015)

    Google Scholar 

  8. Herring, J., Dawant, B.: Automatic lumbar vertebral identification using surface-based registration. Comput. Biomed. Res. 34(2), 74–84 (2001)

    Google Scholar 

  9. Klinder, T., Wolz, R., Lorenz, C., Franz, A., Ostermann, J.: Spine segmentation using articulated shape models. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 227–234. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_28

    Chapter  Google Scholar 

  10. Lim, P.H., Bagci, U., Bai, L.: Introducing willmore flow into level set segmentation of spinal vertebrae. IEEE Trans. Biomed. Eng. 60, 115–122 (2013)

    Article  Google Scholar 

  11. Naegel, B.: Using mathematical morphology for the anatomical labeling of vertebrae from 3D CT-scan images. Comput. Med. Imaging Graph. 31(3), 141–156 (2007)

    Article  Google Scholar 

  12. Ghebreab, S., Smeulders, A.: Combining strings and neck- laces for interactive three-dimensional segmentation of spinal images using an integral deformable spine model. IEEE Trans. Biomed. Eng. 51(10), 1821–1829 (2004)

    Article  Google Scholar 

  13. Hacihaliloglu, I., Rasoulian, A., Rohling, R.N., Abolmaesumi, P.: Local phase tensor features for 3-D ultrasound to statistical shape+pose spine model registration. IEEE Trans. Med. Imaging 33, 2167–2179 (2014)

    Article  Google Scholar 

  14. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  15. Khatami, A., Khosravi, A., Nguyen, T., Lim, C.P., Nahavandi, S.: Medical image analysis using wavelet transform and deep belief networks. Expert Syst. Appl. 86, 190–198 (2017)

    Article  Google Scholar 

  16. Abdel-Zaher, A.M., Eldeib, A.M.: Breast cancer classification using deep belief networks. Expert Syst. Appl. 46, 139–144 (2016)

    Article  Google Scholar 

  17. Sun, W., Zheng, B., Qian, W.: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput. Biol. Med. 89, 530–539 (2017)

    Article  Google Scholar 

  18. Hatipoglu, N., Bilgin, G.: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Med. Biol. Eng. Comput. 55, 1829–1848 (2017)

    Article  Google Scholar 

  19. Pinaya, W.H.L., et al.: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci. Rep. 6, 38897 (2016)

    Article  Google Scholar 

  20. Zhang, S., et al.: A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44, e32 (2015)

    Article  Google Scholar 

  21. Li, H., Li, X., Ramanathan, M., Zhang, A.: Identifying informative risk factors and predicting bone disease progression via deep belief networks. Methods 69, 257–265 (2014)

    Article  Google Scholar 

  22. Yao, J., Burns, J.E., Munoz, H., Summers, R.M.: Detection of vertebral body fractures based on cortical shell unwrapping. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 509–516. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_63

    Chapter  Google Scholar 

  23. Ahmad, M., Yang, J., Ai, D., Qadri, S.F., Wang, Y.: Deep-stacked auto encoder for liver segmentation. In: Wang, Y., et al. (eds.) IGTA 2017. CCIS, vol. 757, pp. 243–251. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7389-2_24

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Program of China (61527827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qadri, S.F., Ahmad, M., Ai, D., Yang, J., Wang, Y. (2018). Deep Belief Network Based Vertebra Segmentation for CT Images. In: Wang, Y., Jiang, Z., Peng, Y. (eds) Image and Graphics Technologies and Applications. IGTA 2018. Communications in Computer and Information Science, vol 875. Springer, Singapore. https://doi.org/10.1007/978-981-13-1702-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1702-6_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1701-9

  • Online ISBN: 978-981-13-1702-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics