Skip to main content

A Novel System for Fingerprint Orientation Estimation

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 875))

Included in the following conference series:

Abstract

Orientation field extraction is a basic and essential task in an Automated Fingerprint Identification System (AFIS). Previous works failed when dealing with latent images due to the complicate background and strong noise. In this paper, an algorithm system specific for fingerprint orientation extraction is proposed, combining the domain and contexture information. Our system consists of three parts, preprocessing, foreground acquisition and a fully convolutional DNN. Preprocessing decrease the strength of noise in input latent fingerprints, making higher quality inputs for foreground acquisition and DNN. Foreground masks are necessary for eliminating effect of background on orientation extraction. DNN makes use of the foreground information and preprocessed input to produce higher quality outputs. Testing results on our dataset shows that proposed method overperforms state-of-the-art algorithms in accuracy after training with the same image set and weak labels, and groundtruth labels will lead to better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A.K., Feng, J., Nandakumar, K.: Fingerprint matching. Computer 43(2), 36–44 (2010)

    Article  Google Scholar 

  2. Conti, V., et al.: Fast fingerprints classification only using the directional image. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS (LNAI), vol. 4692, pp. 34–41. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74819-9_5

    Chapter  Google Scholar 

  3. Jiang, X., Liu, M., Kot, A.C.: Fingerprint retrieval for identification. IEEE Trans. Inf. Forensics Secur. 1(4), 532–542 (2006)

    Article  Google Scholar 

  4. Cappelli, R., Lumini, A., Maio, D., et al.: Fingerprint classification by directional image partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 402–421 (1999)

    Article  Google Scholar 

  5. Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 905–919 (2002)

    Article  Google Scholar 

  6. Zhang, L.: Extraction of direction features in fingerprint image. Appl. Mech. Mater. 518, 316–319 (2014)

    Article  Google Scholar 

  7. Sherlock, B.G., Monro, D.M.: A model for interpreting fingerprint topology. Pattern Recogn. 26(7), 1047–1055 (1993)

    Article  Google Scholar 

  8. Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vis. Graph. Image Process. 37(3), 362–385 (1987)

    Article  Google Scholar 

  9. Mei, Y., Sun, H., Xia, D.: A gradient-based combined method for the computation of fingerprints’ orientation field. Image Vis. Comput. 27(8), 1169–1177 (2009)

    Article  Google Scholar 

  10. Khan, M.A.U., Ullah, K., Khan, A., et al.: Robust multi-scale orientation estimation: directional filter bank based approach. Appl. Math. Comput. 242, 814–824 (2014)

    MATH  Google Scholar 

  11. Jin, C., Kim, H.: Pixel-level singular point detection from multi-scale Gaussian filtered orientation field. Pattern Recogn. 43(11), 3879–3890 (2010)

    Article  Google Scholar 

  12. Gupta, P., Gupta, P.: Fingerprint orientation modeling using symmetric filters. In: Applications of Computer Vision, pp. 663–669. IEEE (2015)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  14. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788. IEEE Computer Society (2016)

    Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Cao, K., Jain, A.K.: Latent orientation field estimation via convolutional neural network. In: International Conference on Biometrics, pp. 349–356. IEEE (2015)

    Google Scholar 

  17. Tang, Y., Gao, F., Feng, J., et al.: FingerNet: an unified deep network for fingerprint minutiae extraction (2017)

    Google Scholar 

  18. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)

    Google Scholar 

  19. Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)

    Google Scholar 

  21. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. SMC 9(1), 62–66 (1979)

    MathSciNet  Google Scholar 

  22. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2015)

    Google Scholar 

  23. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640 (2014)

    Article  Google Scholar 

  24. Schuch, P., Schulz, S.-D., Busch, C.: ConvNet regression for fingerprint orientations. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 325–336. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_27

    Chapter  Google Scholar 

Download references

Acknowledgement

We would like to thank Beijing Hisign Technology Co., Ltd. and Cross-strait Tsinghua Research Institute for providing the resource and support to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, Z., Liu, J., Liu, Y., Guan, Q., Li, R., Zhang, Y. (2018). A Novel System for Fingerprint Orientation Estimation. In: Wang, Y., Jiang, Z., Peng, Y. (eds) Image and Graphics Technologies and Applications. IGTA 2018. Communications in Computer and Information Science, vol 875. Springer, Singapore. https://doi.org/10.1007/978-981-13-1702-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1702-6_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1701-9

  • Online ISBN: 978-981-13-1702-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics