Skip to main content

Fundamentals of Autosomal STR Typing for Forensic Applications: Case Studies

  • Chapter
  • First Online:

Abstract

Each human has 23 pairs of chromosomes, out of which 22 pairs are autosomes and 1 pair is sex chromosome. These 22 pairs of autosomes which determine somatic characters of an individual contribute to the unique genetic makeup of an individual which are inherited from its parents. In this regard, autosomal STRs present at the surrounding of the centromere of an autosomal chromosome are of high use due to their usability in generating a unique fingerprint in an individual. The usefulness of STRs as popular DNA markers relies on the fact that they can be amplified easily by polymerase chain reaction (PCR) and the single copy STR inheritance from each parent. Additionally, the highly variable nature of a number of STR repeats among individuals makes STRs effective for genetic identification of individuals. In this chapter, various autosomal STR markers and their usefulness in the criminal justice system have been discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Butler JM (2015) The future of forensic DNA analysis. Phil Trans R Soc B 370:20140252

    Article  PubMed  PubMed Central  Google Scholar 

  2. Butler JM, Hill CR (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci Rev 24:15–26

    CAS  PubMed  Google Scholar 

  3. Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol Part B 126:455–476

    Article  CAS  Google Scholar 

  4. Cortellini V, Cerri N, Verzeletti A (2011) Genetic variation at 5 new autosomal short tandem repeat markers (D10S1248, D22S1045, D2S441, D1S1656, D12S391) in a population-based sample from Maghreb region. Croat Med J 52:368–371

    Article  PubMed  PubMed Central  Google Scholar 

  5. El-Alfy SH, Ahmed F, El-Hafez A (2012) Paternity testing and forensic DNA typing by multiplex STR analysis using ABI PRISM 310 genetic analyzer. J Genet Eng Biotechnol 10:101–112

    Article  CAS  Google Scholar 

  6. Gettings KB, Aponte RA, Vallone PM, Butler JM (2015) STR allele sequence variation: current knowledge and future issues. Forensic Sci Int Genet 18:118–130

    Article  CAS  PubMed  Google Scholar 

  7. Harper JC, Coonen E, Handyside AH, Winston RM, Hopman AH, Delhanty JD (1995) Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat Diagn 15:41–49

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez D, Fisher EMC (1995) Down syndrome genetics: unravelling a multifactorial disorder. Hum Mol Genet 5:1411–1416

    Article  Google Scholar 

  9. Hu N, Cong B, Li S, Ma C, Fu L, Zhang X (2014) Current developments in forensic interpretation of mixed DNA samples. Biomed Rep 2:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hunter P (2010) Anything you touch may be used against you. EMBO Rep 11:424–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson NA, Lachance J (2012) The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann N Y Acad Sci 1256:E1–E22

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koopman P (2001) Sry, Sox9 and mammalian sex determination. EXS 91:25–56

    CAS  Google Scholar 

  13. Lenroot RK, Lee NR, Giedd JN (2009) Effects of sex chromosome aneuploidies on brain development: evidence from neuroimaging studies. Dev Disabil Res Rev 15:318–327

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lundsteen C, Lind AM, Granum E (1976) Visual classification of banded human chromosomes. I. Karyotyping compared with classification of isolated chromosomes. Ann Hum Genet 40:87–97

    Article  CAS  PubMed  Google Scholar 

  15. Moretti TR, Moreno LI, Smerick JB, Pignone ML, Hizon R, Buckleton JS, Bright JN, Onorato AJ (2016) Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic Sci Int Genet 25:175–181

    Article  CAS  PubMed  Google Scholar 

  16. Puers C, Hammond HA, Jin L, Caskey CT, Schumm JW (1993) Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTH01[AATG]n and reassignment of alleles in population analysis by using a locus-specific allelic ladder. Am J Hum Genet 53:953–958

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Purps J, Geppert M, Nagy M, Roewer L (2015) Validation of a combined autosomal/Y-chromosomal STR approach for analyzing typical biological stains in sexual-assault cases. Forensic Sci Int Genet 19:238–242

    Article  CAS  PubMed  Google Scholar 

  18. Saad R (2005) Discovery, development, and current applications of DNA identity testing. BUMC Proc 18:130–133

    Google Scholar 

  19. Schneider PM (2012) Beyond STRs: the role of diallelic markers in forensic genetics. Transfus Med Hemother 39:176–180

    Article  PubMed  PubMed Central  Google Scholar 

  20. Subramanian S, Mishra RK, Singh L (2003) Genome Biol 4:R13. Available online at: http://genomebiology.com/2003/4/2/R13

  21. Urquhart A, Kimpton CP, Downes TJ, Gill P (1994) Variation in short tandem repeat sequences- a survey of twelve microsatellite loci for use as forensic identification markers. Int J Leg Med 107:13–20

    Article  CAS  Google Scholar 

  22. Walsh SJ, Ribaux O, Buckleton JS, Ross A, Roux C (2009) DNA profiling and criminal justice: a contribution to a changing debate. Aust J Forensic Sci 36:34–43

    Article  Google Scholar 

  23. Ziętkiewicz E, Witt M, Daca P, Gala JZ, Goniewicz M, Jarząb B, Witt M (2012) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 53:41–60

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, H.R., Rawat, N., Kakkar, S., Swain, A.K. (2018). Fundamentals of Autosomal STR Typing for Forensic Applications: Case Studies. In: Dash, H., Shrivastava, P., Mohapatra, B., Das, S. (eds) DNA Fingerprinting: Advancements and Future Endeavors. Springer, Singapore. https://doi.org/10.1007/978-981-13-1583-1_12

Download citation

Publish with us

Policies and ethics