Skip to main content

Design of Micro-heater on 3D-SnO2 Gas Sensor

  • Conference paper
  • First Online:
Computing, Communication and Signal Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 810))

  • 1644 Accesses

Abstract

Design of the heater on resistive gas sensors plays an important role since the performance of the gas sensor depends on temperature of the sensing materials. Heater on the SnO2 gas sensor is designed in 3D geometry. The meander structure of heater is designed in such a way that the distribution of temperature is uniform on the sensor. COMSOL Multiphysics 5.0 simulating tool based on finite element method is used to study Joules heating in heater. Temperature of the sensor is maintained in the range of 617–621 K (344–348 °C). Uniform distribution of temperature is found on the surface of the sensors with variation of ±2 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eason, G., Taguchi, N.: Japanese Patent Application (1962)

    Google Scholar 

  2. Batzill, Matthias, Diebold, Ulrike: Prog. Surf. Sci. 79, 47 (2005)

    Article  Google Scholar 

  3. Leo, G., Rella, R., Siciliano, P., Capone, S., Alonso, J.C., Pankov, V., Ortiz, A.: Sens. Actuators B: Chem. 58(1), 370–374 (1999)

    Google Scholar 

  4. Sberveglieri, G.: Recent developments in semiconducting thin-film gas sensors. Sens. Actuators B: Chem. 23(2–3), 103–109 (1995)

    Article  Google Scholar 

  5. Mitra, P., Chatterjee, A.P., Maiti, H.S.: ZnO thin film sensor. Mater. Lett. 35(1–2), 33–38 (1998)

    Article  Google Scholar 

  6. Karunagaran, B., Uthirakumar, P., Chung, S.J., Velumani, S., Suh, E.-K.: TiO2 thin film gas sensor for monitoring ammonia. In: Materials Characterization, vol. 58 (8–9), pp. 680–684 (2007)

    Article  Google Scholar 

  7. Eranna, G., Runthala, D.P., Gupta, R.P.: Oxide materials for development of integrated gas sensors-a comprehensive review. Crit. Rev. Solid State Mater. Sci. (3–4), 111–188 (2004)

    Article  Google Scholar 

  8. Umbarkar, S.B., Rajput, G.Y., Vasappanavara, R.: Design and analysis of CO2 sensor using COMSOL multiphysics. In: Proceedings COMSOL Conference (2016)

    Google Scholar 

  9. Velmathi, S., Ramshanker, G., Mohan, N., Design, S.: Electro-thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing. In: Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1258–1262 (2010)

    Google Scholar 

  10. Sujatha, L., Selvakumar, V.S., Aravind, S., Padamapriya, R., Preethi, B.: Design and analysis of micro-heaters using COMSOL multiphysics for MEMS based gas sensor. In: Proceedings of the COMSOL Conference (2012)

    Google Scholar 

  11. Bansal, V., Gurjar, A., Kumar, D., Prasad, B.: 3-D design, electro-thermal simulation and geometrical optimization of spiral platinum micro-heaters for low power gas sensing applications using COMSOL. In: Proceedings COMSOL Conference (2011)

    Google Scholar 

  12. Dugdale, J.S.: The Electrical Properties of Metals and Alloys. Dover Publications (2016)

    Google Scholar 

  13. Swanson, J.G., Campbell, D.S.: The structural and electrical properties of 80: 20 NiCr thin films. Thin Solid Films 1(3), 183–202 (1967)

    Article  Google Scholar 

  14. Matula, R.A.: Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8(4), 1147–1298 (1979)

    Article  Google Scholar 

  15. Monika, Dr, Arora, A.: Design and simulation of MEMS based microhotplate as gas sensor. Int. J. Adv. Res. Comput. Eng. Technol. 2(8), 2487–2492 (2013)

    Google Scholar 

  16. Dumitrescu, M., Cobianu, C., Lungu, D., Dascalu, D., Pascu, A., Kolev, S., van den Berg, A.: Thermal simulation of surface micromachined polysilicon hot plates of low power consumption. Sens. Actuators A: Phys. 76(1–3), 51–56 (1999)

    Article  Google Scholar 

  17. Semancik, S., Cavicchi, R.E., Wheeler, M.C., Tiffany, J.E., Poirier, G.E., Walton, R.M., Suehle, J.S., Panchapakesan, B., DeVoe, D.L.: Microhotplate platforms for chemical sensor research. Sens. Actuators B: Chem. 77(1–2), 579–591 (2001)

    Article  Google Scholar 

  18. Cerdà Belmonte, J., Manzano, J., Arbiol, J., Cirera, A., Puigcorbé, J., Vilà, A., Sabaté, N., Gràcia, I., Cané, C., Morante, J.R.: Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2. Sens. Actuators B: Chem. 114(2), 881–892 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajendrasingh Y. Rajput .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajput, G.Y., Gofane, M.S., Dhobale, S. (2019). Design of Micro-heater on 3D-SnO2 Gas Sensor. In: Iyer, B., Nalbalwar, S., Pathak, N. (eds) Computing, Communication and Signal Processing . Advances in Intelligent Systems and Computing, vol 810. Springer, Singapore. https://doi.org/10.1007/978-981-13-1513-8_63

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1513-8_63

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1512-1

  • Online ISBN: 978-981-13-1513-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics