Skip to main content

Design of Graphene-Based THz Antennas

  • Conference paper
  • First Online:
Book cover Computing, Communication and Signal Processing

Abstract

This paper first reports the design of the tunable graphene-based patch antenna at THz frequencies. After that a tunable graphene-based U slot loaded patch antenna has been designed to increase the bandwidth at THz frequencies. The simulated results for both the antennas are presented for different values of chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  2. Castro Neto, A.H., et al.: The electronic properties of graphene. Rev. Modern Phys. 81(1), 109–162 (2009)

    Article  Google Scholar 

  3. Wu, Y.H., Yu, T., Shen, Z.X.: Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010)

    Article  Google Scholar 

  4. Yurchenko, S.O., Komarov, K.A., Pustovoit, V.I.: Multilayer-graphene-based amplifier of surface acoustic waves. AIP Adv. 5(057144), 1–12 (2015)

    Google Scholar 

  5. Al-Dirini, F., Mohammed, M.A., Hossain, F.M., Nirmalathas, T., Skafidas, E.: All-graphene planar double-quantum-dot resonant tunneling diodes. J. Electron Device Soc. 4, 30–39 (2016)

    Article  Google Scholar 

  6. Fahad, M.S., Srivastava, A., Sharma, A.K., Mayberry, C.: Analytical current transport modeling of graphene nanoribbon tunnel field-effect transistors for digital circuit design. IEEE Trans. Nanotechnol. 15, 39–50 (2016)

    Article  Google Scholar 

  7. Li, Y., et al.: Graphene-based floating-gate nonvolatile optical switch. IEEE Photon. Technol. Lett. 28, 284–287 (2016)

    Article  Google Scholar 

  8. Mao, X., et al.: Optoelectronic mixer based on graphene FET. IEEE Electron Device Lett. 36, 253–255 (2015)

    Article  Google Scholar 

  9. Correas-Serrano, D., Gomez-Diaz, J.S., Perruisseau-Carrier, J., Alvarez-Melcon, A.: Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans. Nanotechnol. 13, 1145–1153 (2014)

    Article  Google Scholar 

  10. Wang, X.-C., Zhao, W.-S., Hu, J., Yin, W.-Y.: Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance Surface. IEEE Trans. Nanotechnol. 14, 62–69 (2015)

    Article  Google Scholar 

  11. Zangeneh-Nejad, F., Safian, R.: A tunable high-impedance THz antenna array. In: 23rd Iranian Conference on Electrical Engineering (2015)

    Google Scholar 

  12. Yao, G., et al.: Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photon. J. 8(7800808), 1–8 (2016)

    Google Scholar 

  13. Wang, Y., Chen, Q., Shen, X.: Actively controlled plasmonic Bragg reflector based on a graphene parallel-plate waveguide. AIP Adv. 5(077152), 1–7 (2015)

    Google Scholar 

  14. Zheng, R., Gao, D., Dong, J.: Ultra-compact broadband tunable graphene plasmonic multimode interferometer. IEEE Photon. Technol. Lett. 28, 645–648 (2016)

    Article  Google Scholar 

  15. Huang, C.-H., Yu, S.-C., Lai, Y.-C., Chi, G.-C., Yu, P.: Efficiency enhancement of organic/GaAs hybrid photovoltaic cells using transparent graphene as front electrode. IEEE J. Photovolt. 6, 480–485 (2016)

    Article  Google Scholar 

  16. de Oliveira, R.E.P., de Matos, C.J.S.: Graphene based waveguide Polarizers: In Depth physical analysis and relevant parameters. Graphene and Nanomaterials Research Center, Mackenzie Presbyterian University, Sao Paulo, 01302-907, Brazil (2015)

    Google Scholar 

  17. Conteduca, D., Dell’Olio, F., Ciminelli, C., Armenise, M.N.: Resonant graphene-based tunable optical delay line. IEEE Photonics J. 7(7802409), 1–9 (2015)

    Article  Google Scholar 

  18. Hanson, G.W.: Dyadic greens functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Varshney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varshney, A.K., Pathak, N.P., Sircar, D. (2019). Design of Graphene-Based THz Antennas. In: Iyer, B., Nalbalwar, S., Pathak, N. (eds) Computing, Communication and Signal Processing . Advances in Intelligent Systems and Computing, vol 810. Springer, Singapore. https://doi.org/10.1007/978-981-13-1513-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1513-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1512-1

  • Online ISBN: 978-981-13-1513-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics