Skip to main content

Nanomaterials: Diagnosis and Therapeutic Properties

  • Chapter
  • First Online:
Book cover Role of Tyrosine Kinases in Gastrointestinal Malignancies

Abstract

Therapeutic strategies toward the treatment of gastrointestinal (GI) malignancies frequently involve the administration of increased dosage of chemotherapeutic drugs, often resulting in nonspecific toxicities. Although conventional radio- and chemotherapy have been the gold standard of cancer therapy for decades, these approaches are not optimal and can lead to resistance to these and other therapies. Effectiveness of GI malignancy therapies depends on fine-tuning of eradication of cancer cells with minimal or ideally no toxic effect on normal cells. Nanomaterials (NMs) offer a solution for targeted killing of cancerous cells without causing damage to the healthy host cells. NMs are appealing drug carriers based on their high tissue permeability, high colloidal stability, small size in the nanometer range, high surface-to-volume ratio (large amount of drug can be loaded), aqueous solubility, ease of characterization, and surface modification. The enhanced permeability and retention (EPR) effect of NMs permit accumulation at the tumor site. Apart from the passive accumulation of nanoparticles at tumor sites, NMs actively delivered the drug at tumor sites by loading with various growth factor receptors, peptides, shRNA, and small molecules. In this chapter, we will discuss the impact of NMs on tyrosine kinases associated with growth and metastasis of selected GI malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murty B, Shankar P, Raj B, Rath B, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer, Berlin

    Book  Google Scholar 

  2. Reddy LH, Sharma R, Murthy R (2004) Enhanced tumour uptake of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles in mice bearing Dalton’s lymphoma tumour. J Drug Target 12:443–451

    Article  CAS  Google Scholar 

  3. Reddy LH, Murthy R (2004) Pharmacokinetics and biodistribution studies of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 148:161–166

    Article  CAS  Google Scholar 

  4. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  5. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  Google Scholar 

  6. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  7. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle− peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701

    Article  CAS  Google Scholar 

  8. Sarkar S, Konar S, Prasad PN, Rajput S, Kumar BP, Rao RR, Pathak A, Fisher PB, Mandal M (2017) Micellear gold nanoparticles as delivery vehicles for dual tyrosine kinase inhibitor ZD6474 for metastatic breast cancer treatment. Langmuir 33:7649–7659

    Article  CAS  Google Scholar 

  9. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  CAS  Google Scholar 

  10. Menon JU, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen KT (2013) Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 3:152

    Article  CAS  Google Scholar 

  11. Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 9:1225–1243

    Article  CAS  Google Scholar 

  12. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  13. Goring R, Goldman A, Kaufman K, Roberts C, Quesenberry K, Kollias G (1986) Needle catheter duodenostomy: a technique for duodenal alimentation of birds. J Am Vet Med Assoc 189:1017–1019

    CAS  PubMed  Google Scholar 

  14. Torres-Lugo M, Rinaldi C (2013) Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine 8:1689–1707

    Article  CAS  Google Scholar 

  15. Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ (2016) Hyperthermia: how can it be used? Oman Med J 31:89

    Article  CAS  Google Scholar 

  16. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  CAS  Google Scholar 

  17. Moore CM, Pendse D, Emberton M (2009) Photodynamic therapy for prostate cancer—a review of current status and future promise. Nat Rev Urol 6:18

    Article  CAS  Google Scholar 

  18. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56

    Article  Google Scholar 

  19. Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Pan L, Gao G, Fu H, Fu S, Song H (2013) Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol 11:17

    Article  CAS  Google Scholar 

  20. Li Y, Gobin AM, Dryden GW, Kang X, Xiao D, Li SP, Zhang G, Martin RC (2013) Infrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma. Int J Nanomedicine 8:2153

    PubMed  PubMed Central  Google Scholar 

  21. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684

    Article  CAS  Google Scholar 

  22. Chanda N, Shukla R, Katti KV, Kannan R (2009) Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett 9:1798–1805

    Article  CAS  Google Scholar 

  23. Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, Kim SY, Myung S-J, Lee S, Chen X (2012) Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 33:6186–6193

    Article  CAS  Google Scholar 

  24. El-Deeb NM, El-Sherbiny IM, El-Aassara MR, Hafez EE (2015) Novel trend in colon cancer therapy using silver nanoparticles synthesized by honey bee. J Nanomed Nanotechnol 6:2

    Google Scholar 

  25. Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ (2004) Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release 95:613–626

    Article  CAS  Google Scholar 

  26. Reynolds CH, Annan N, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA (2000) Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging. J Am Chem Soc 122:8940–8945

    Article  CAS  Google Scholar 

  27. Oostendorp M, Douma K, Hackeng TM, Post MJ, van Zandvoort MA, Backes WH (2010) Gadolinium-labeled quantum dots for molecular magnetic resonance imaging: R1 versus R2 mapping. Magn Reson Med 64:291–298

    Article  Google Scholar 

  28. Phillips MA, Gran ML, Peppas NA (2010) Targeted nanodelivery of drugs and diagnostics. Nano Today 5:143–159

    Article  CAS  Google Scholar 

  29. Bhise S, Nalawade AD, Wadhawa H (2004) Role of protein tyrosine kinase inhibitors in cancer therapeutics. Indian J Biochem Biophys 41(6):273–280

    CAS  PubMed  Google Scholar 

  30. Roskoski R (2005) Structure and regulation of Kit protein-tyrosine kinase—the stem cell factor receptor. Biochem Biophys Res Commun 338:1307–1315

    Article  CAS  Google Scholar 

  31. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  CAS  Google Scholar 

  32. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, Muders M, Wang S, Buhrow SA, Safgren SL (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978

    Article  CAS  Google Scholar 

  33. Knight MW, Halas NJ (2008) Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit. New J Phys 10:105006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganji Seeta Rama Raju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subhadarshini, S., Merchant, N., Seeta Rama Raju, G. (2018). Nanomaterials: Diagnosis and Therapeutic Properties. In: Nagaraju, G. (eds) Role of Tyrosine Kinases in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-13-1486-5_16

Download citation

Publish with us

Policies and ethics