Skip to main content

Non-intrusive Load Monitoring Algorithms for Privacy Mining in Smart Grid

  • Chapter
  • First Online:
Advances in Cyber Security: Principles, Techniques, and Applications

Abstract

Non-intrusive load monitoring (NILM) method is essentially artificial intelligence algorithms for energy conservation and privacy mining. It obtains consumers’ privacy data by decomposing aggregated meter readings of consumer energy consumption into the individual devices energy consumption. In this chapter, we first introduce the background and the advantage of the NILM method, and the classification of NILM method. Secondly, we demonstrate the general process of NILM method. The specific process contains data preprocess, event detection and feature extraction, and energy consumption learning and appliance inference. Furthermore, we introduce a supervised NILM example and an unsupervised example. We describe their processes, and discuss their characteristics and performances. In addition, the applications of NILM method are depicted. Lastly, we conclude this chapter and give the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esa, N. F., Abdullah, M. P., & Hassan, M. Y. (2016). A review disaggregation method in non-intrusive appliance load monitoring. Renewable and Sustainable Energy Reviews, 66, 163–173.

    Article  Google Scholar 

  2. Faustine, A., Mvungi, N. H., Kaijage, S., et al. (2017). A survey on non-intrusive load monitoring methodies and techniques for energy disaggregation problem[J].

    Google Scholar 

  3. Zoha, A., Gluhak, A., Imran, M. A., et al. (2012). Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey[J]. Sensors, 12(12), 16838.

    Article  Google Scholar 

  4. Jiang, X., Dawson-Haggerty, S., Dutta, P., et al. (2009). Design and implementation of a high-fidelity AC metering network. In International Conference on Information Processing in Sensor Networks (pp. 253–264). IEEE.

    Google Scholar 

  5. Suzuki, K., Inagaki, S., Suzuki, T., et al. (2008). Nonintrusive appliance load monitoring based on integer programming. In Sice Conference (pp. 2742–2747). IEEE.

    Google Scholar 

  6. Ridi, A., Gisler, C., & Hennebert, J. (2014). A survey on intrusive load monitoring for appliance recognition. In International Conference on Pattern Recognition (pp. 3702–3707). IEEE Computer Society.

    Google Scholar 

  7. Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12), 1870–1891.

    Article  Google Scholar 

  8. Kolter, J. Z. (2011). Recent advances in algorithms for energy disaggregation. In BECC Conference.

    Google Scholar 

  9. Tsai, M. S., & Lin, Y. H. (2012). Development of a non-intrusive monitoring technique for appliance’ identification in electricity energy (pp. 108–113). IEEE.

    Google Scholar 

  10. Adabi, A., Mantey, P., Holmegaard, E., et al. (2015). Status and challenges of residential and industrial non-intrusive load monitoring. In Technologies for Sustainability (pp. 181–188). IEEE.

    Google Scholar 

  11. Zeifman, M., & Roth, K. (2011). Nonintrusive appliance load monitoring: Review and outlook. IEEE Transactions on Consumer Electronics, 57(1), 76–84.

    Article  Google Scholar 

  12. Belley, C., Gaboury, S., Bouchard, B., et al. (2014). An efficient and inexpensive method for activity recognition within a smart home based on load signatures of appliances. Pervasive and Mobile Computing, 12(3), 58–78.

    Article  Google Scholar 

  13. Zoha, A., Gluhak, A., Imran, M. A., et al. (2012). Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors, 12(12), 16838–16866.

    Article  Google Scholar 

  14. Anderson, K., Ocneanu, A., Benitez, D., et al. (2012). BLUED: A fully labeled public dataset for event-based non-intrusive load monitoring research.

    Google Scholar 

  15. Kolter, J. Z., & Johnson, M. J. (2011). REDD: A public data set for energy disaggregation research. In Workshop on data mining applications in sustainability (SIGKDD) (Vol. 25, pp. 59–62). San Diego, Citeseer.

    Google Scholar 

  16. Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12), 1870–1891.

    Article  Google Scholar 

  17. Norford, L. K., & Leeb, S. B. (1995). Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms. Energy and Buildings, 24(1), 51–64.

    Article  Google Scholar 

  18. Farinaccio, L., & Zmeureanu, R. (1999). Using a pattern recognition approach to disaggregate the total electricity consumption in a house into the major end-uses. Energy and Buildings, 30, 245–259.

    Article  Google Scholar 

  19. Marceau, M. L., & Zmeureanu, R. (2000). Nonintrusive load disaggregation computer program to estimate the energy consumption of major end uses in residential buildings. Energy Conversion and Management, 41, 1389–1403.

    Article  Google Scholar 

  20. Lee, W. K., Fung, G. S. K., Lam, H. Y., Chan, F. H. Y., & Lucente, M. (2004). Exploration on load signatures. In Proceedings of International Conference on Electrical Engineering (ICEE), Sapporo, Japan, 4–6 July 2004 (pp. 1–5).

    Google Scholar 

  21. Lam, H., Fung, G., & Lee, W. (2007). A novel method to construct taxonomy electrical appliances based on load signaturesof. IEEE Transactions on Consumer Electronics, 53(2), 653–660.

    Article  Google Scholar 

  22. Madden, S., Franklin, M. J., Hellerstein, J. M., et al. (2002). TAG: A Tiny AGgregation service for ad-hoc sensor networks. Acm Sigops Operating Systems Review, 36(SI), 131–146.

    Article  Google Scholar 

  23. Gupta, S., Reynolds, M. S., & Patel, S. N. (2010). ElectriSense: Single-point sensing using EMI for electrical event detection and classification in the home. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing, Copenhagen, Denmark, 26–29 September 2010 (pp. 139–148).

    Google Scholar 

  24. Marchiori, A., Hakkarinen, D., Han, Q., et al. (2011). Circuit-level load monitoring for household energy management. IEEE Pervasive Computing, 10(1), 40–48.

    Article  Google Scholar 

  25. Liang, J., Ng, S. K. K., Kendall, G., et al. (2010). Load signature study-part I: Basic concept, structure, and methodology. IEEE Transactions on Power Delivery, 25(2), 551–560.

    Article  Google Scholar 

  26. Najmeddine, H., Drissi, K. E. K., Pasquier, C., Faure, C., Kerroum, K., Diop, A., et al. (2008). State of art on load monitoring methods. In Proceedings of the 2nd IEEE International Conference on Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008 (pp. 1256–1258).

    Google Scholar 

  27. Kato, T., Cho, H. S., & Lee, D. (2009). Appliance Recognition from Electric Current Signals for Information-Energy Integrated Network in Home Environments. In Proceedings of the 7th International Conference on Smart Homes and Health Telematics, Tours, France, 1–3 July 2009 (Vol. 5597, pp. 150–157).

    Google Scholar 

  28. Cole, A., & Albicki, A. (2000). Nonintrusive identification of electrical loads in a three-phase environment based on harmonic content. In Proceedings of Instrumentation and Measurement Technology Conference, Baltimore, MD, USA, 1–4 May 2000 (Vol. 716, pp. 24–29).

    Google Scholar 

  29. Suzuki, K., Inagaki, S., Suzuki, T., Nakamura, H., & Ito, K. (2008). Nonintrusive appliance load monitoring based on integer programming. In Proceedings of SICE Annual Conference, Tokyo, Japan, 20–22 August 2008 (Vol. 174, pp. 2742–2747).

    Google Scholar 

  30. Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., et al. (2003). Power signature analysis. IEEE Power and Energy Magazine, 1, 56–63.

    Article  Google Scholar 

  31. Li, J., West, S., & Platt, G. (2012). Power decomposition based on SVM regression. In Proceedings of International Conference on Modelling, Identification Control, Wuhan, China, 24–26 June, 2012 (pp. 1195–1199).

    Google Scholar 

  32. Schoofs, A., Guerrieri, A., Delaney, D., O’Hare, G., & Ruzzelli, A. (2010). ANNOT: Automated electricity data annotation using wireless sensor networks. In Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks, Boston, MA, USA, 21–25 June 2010 (pp. 1–9).

    Google Scholar 

  33. Rowe, A., Berges, M., & Rajkumar, R. (2010). Contactless sensing of appliance state transitions through variations in electromagnetic fields. In Sensing Systems for Energy-Efficiency in Building, Zurich, Switzerland, 3–5 November 2010 (pp. 19–24).

    Google Scholar 

  34. Patel, S. N, Robertson, T., Kientz, J. A., Reynolds, M. S., Abowd, G. D. (2007). At the flick of a switch: Detecting and classifying unique electrical events on the residential power line. In Proceedings of the 9th International Conference on Ubiquitous Computing, Innsbruck, Austria, 16–19 September 2007 (pp. 271–288).

    Google Scholar 

  35. Zeifman, M., & Roth, K. (2011). Nonintrusive appliance load monitoring: Review and outlook. IEEE Transactions on Consumer Electronics, 57(1), 76–84.

    Article  Google Scholar 

  36. Chang, H. H., Yang, H. T., & Lin, C. L. (2007). Load identification in neural networks for a non-intrusive monitoring of industrial electrical loads. Lecture Notes in Computer Science, 5236, 664–674.

    Article  Google Scholar 

  37. Shaw, S. R., Leeb, S. B., Norford, L. K., et al. (2008). Nonintrusive load monitoring and diagnostics in power systems. IEEE Transactions on Instrumentation and Measurement, 57(7), 1445–1454.

    Article  Google Scholar 

  38. Cole, A. I., & Albicki, A. (1998). Data extraction for effective non-intrusive identification of residential power loads. In Proceedings of Instrumentation and Measurement Technology Conference, St. Paul, MN, USA, 18–21 May 1998 (Vol. 2, pp. 812–815).

    Google Scholar 

  39. Hazas, M., Friday, A., & Scott, J. (2011). Look back before leaping forward: Four decades of domestic energy inquiry. IEEE Pervasive Computing, 10, 13–19.

    Article  Google Scholar 

  40. Bonfigli, R., Squartini, S., Fagiani, M., et al. (2015). Unsupervised algorithms for non-intrusive load monitoring: An up-to-date overview (pp. 1175–1180). New York: IEEE.

    Google Scholar 

  41. Anderson, K. D., Berges, M. E., Ocneanu, A., et al. (2012). Event detection for Non Intrusive load monitoring. In Conference on IEEE Industrial Electronics Society (pp. 3312–3317). IEEE.

    Google Scholar 

  42. Makonin, S., Popowich, F., Bajic, I. V., et al. (2016). Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring[J]. IEEE Transactions on Smart Grid, 7(6), 2575–2585.

    Article  Google Scholar 

  43. Parson, O., Ghosh, S., Weal, M., et al. (2012). Non–intrusive load monitoring using prior models of general appliance types. In Twenty-Sixth AAAI Conference on Artificial Intelligence (pp. 356–362). AAAI Press.

    Google Scholar 

  44. Zhao, B., Stankovic, L., & Stankovic, V. (2017). On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access, 4, 1784–1799.

    Article  Google Scholar 

  45. Jia, R., Gao, Y., & Spanos, C. J. (2015). A fully unsupervised non-intrusive load monitoring framework. In IEEE International Conference on Smart Grid Communications (pp. 872–878). IEEE.

    Google Scholar 

  46. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202.

    Article  Google Scholar 

  47. Atlas, L. E., Homma, T., & Ii, R. J. M. (1987). An artificial neural network for spatio-temporal bipolar patterns: Application to phoneme classification. In Neural Information Processing Systems (pp. 31–40).

    Google Scholar 

  48. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  49. Kelly, J., & Knottenbelt, W. (2015). The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from UK homes. Scientific Data, 2(150007). https://doi.org/10.1038/sdata.2015.7.

    Article  Google Scholar 

  50. Batra, N., Kelly, J., Parson, O., Dutta, H., Knottenbelt, W., Rogers, A., et al. (2014). An open source toolkit for non-intrusive load monitoring. Cambridge. https://doi.org/10.1145/2602044.2602051.

  51. Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings of the IEEE, 78(10), 1550–1560.

    Article  Google Scholar 

  52. Dongshu, W., Jialing, H., Mussadiq, A. R., Zijian, Z., & Liehuang, Z. (2017). An Efficient Sparse Coding-based Data-mining Scheme in Smart Grid. MSN 2017 Accepted.

    Google Scholar 

  53. Elhamifar, E., & Sastry, S. (2015). Energy disaggregation via learning powerlets and sparse coding. In AAAI (pp. 629–635).

    Google Scholar 

  54. Lai, Y. X., Lai, C. F., Huang, Y. M., & Chao, H. C. (2012). Multi-appliance recognition system with hybrid SVM/GMM classifier in ubiquitous smart home. Information and Sciences. https://doi.org/10.1016/j.ins.2012.10.002.

    Article  Google Scholar 

  55. Bao, C., Ji, H., Quan, Y., et al. (2016). Dictionary learning for sparse coding: Algorithms and convergence analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7), 1356–1369.

    Article  Google Scholar 

  56. Guvensan, M. A., Taysi, Z. C., & Melodia, T. (2012). Energy monitoring in residential spaces with audio sensor nodes: TinyEARS. Ad Hoc Networks 2012. https://doi.org/10.1016/j.adhoc.2012.10.002.

    Article  Google Scholar 

  57. Yoo, J., Park, B., & Hur, K. (2011). Context awareness-based disaggregation of residential load consumption. In Proceedings of the 18th International Federation of Automatic Control (IFAC) World Congress, Milano, Italy, 28 August–2 September 2011 (pp. 13691–13695).

    Article  Google Scholar 

  58. Berges, M., & Rowe, A. (2011). Poster abstract: Appliance classification and energy management using multi-modal sensing. In Proceedings of the 3rd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, Seattle, WA, USA, 1 November 2011.

    Google Scholar 

  59. Anderson, K., Ocneanu, A., Benitez, D., Carlson, D., Rowe, A., Berges, M., et al. (2012). A Fully Labeled Public Dataset for Event-Based Non-Intrusive Load Monitoring Research.

    Google Scholar 

  60. Saitoh, T., Osaki, T., Konishi, R., et al. (2010). Current sensor based home appliance and state of appliance recognition. Sice Journal of Control Measurement and System Integration, 3(2), 86–93.

    Article  Google Scholar 

  61. Lin, G. Y., Lee, S. C., Hsu, Y. J., et al. (2010). Applying power meters for appliance recognition on the electric panel. In Industrial Electronics and Applications (pp. 2254–2259). IEEE.

    Google Scholar 

  62. Shao, H., Marwah, M., & Ramakrishnan, N. (2012). A temporal motif mining approach to unsupervised energy disaggregation. In Proceedings of the 1st International Workshop on Non-Intrusive Load Monitoring, Pittsburgh, PA, USA, 7 May 2012.

    Google Scholar 

  63. Kelly, J., & Knottenbelt, W. (2015). Neural NILM: Deep neural networks applied to energy disaggregation (pp. 55–64).

    Google Scholar 

  64. Cheng, X., Li, L., Wu, H., Ding, Y., Song, Y., & Sun, W. (2016). A survey of the research on non-intrusive load monitoring and disaggregation, 40, 3108–3117. https://doi.org/10.13335/j.1000-3673.pst.2016.10.026.

  65. Batra, N., Parson, O., Berges, M., et al. (2015). A comparison of non-intrusive load monitoring methods for commercial and residential buildings [J/OL]. 2014-08-27. http://arxiv.org/abs/1408.6595.

  66. Norford, L. K., & Leeb, S. B. (1996). Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms. Energy and Buildings, 24(1), 51–64.

    Article  Google Scholar 

  67. Shaw, S. R., Leeb, S. B., Norford, L. K., et al. (2008). Nonintrusive load monitoring and diagnostics in power systems. IEEE Transactions on Instrumentation and Measurement, 57(7), 1445–1454.

    Article  Google Scholar 

  68. Orji, U., Remscrim, Z., Laughman, C. et al. (2010). Fault detection and diagnostics for non-intrusive monitoring using motor harmonics. Applied Power Electronics Conference and Exposition (pp. 1547–1554). Palm Springs, CA: IEEE.

    Google Scholar 

  69. Yan, R., & Gao, R. X. (2009). Energy-based feature extraction for defect diagnosis in rotary machines. IEEE Transactions on Instrumentation and Measurement, 58(9), 3130–3139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialing He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z., He, J., Zhu, L., Ren, K. (2019). Non-intrusive Load Monitoring Algorithms for Privacy Mining in Smart Grid. In: Li, KC., Chen, X., Susilo, W. (eds) Advances in Cyber Security: Principles, Techniques, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-1483-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1483-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1482-7

  • Online ISBN: 978-981-13-1483-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics