Skip to main content

Critical Role of Mitochondrial Autophagy in Cerebral Stroke

  • Chapter
  • First Online:
Advancement in the Pathophysiology of Cerebral Stroke
  • 926 Accesses

Abstract

Mitochondria supply energy to cells by generating ATP; thus it can be considered as one of the essential organelles of the cell. For the efficient working of cells, a good quality of mitochondria is essential; thus the elimination of injured or nonfunctional mitochondria by means of mitophagy is a very important process for cell function. Mitophagy showed a neuroprotective property in cerebral ischemia by accurate labeling and entrapment of defective mitochondria into isolation membranes. Then the entrapped mitochondria were digested by lysosomes. Therefore, the regulation of mitophagy in ischemic brain injury may be used as a therapeutic strategy to protect the neuron by the efficient removal of injured mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paliwal, P., Dash, D., & Krishnamurthy, S. (2017). Pharmacokinetic study of piracetam in focal cerebral ischemic rats. European Journal of Drug Metabolism and Pharmacokinetics, 1–9.

    Google Scholar 

  2. Paliwal, P., Chauhan, G., Gautam, D., Dash, D., Patne, S. C. U., & Krishnamurthy, S. (2018). Indole-3-Carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391, 613–625.

    Article  CAS  Google Scholar 

  3. Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.

    Article  CAS  Google Scholar 

  4. Carloni, S., Girelli, S., Scopa, C., Buonocore, G., Longini, M., & Balduini, W. (2010). Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy, 6, 366–377.

    Article  CAS  Google Scholar 

  5. Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology, 33, 437–449.

    Article  CAS  Google Scholar 

  6. Deter, R. L., Baudhuin, P., & De Duve, C. (1967). Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. The Journal of Cell Biology, 35, C11–C16.

    Article  CAS  Google Scholar 

  7. Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E. H., & Lenardo, M. J. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 304(5676), 1500–1502.

    Article  CAS  Google Scholar 

  8. Liu, L., Sakakibar, a. K., Chen, Q., & Okamoto, K. (2014). Receptor-mediated mitophagy in yeast and mammalian systems. Cell Research, 24, 787–795.

    Article  CAS  Google Scholar 

  9. Santos, R. X., SC, C. a., Wang, X., Perry, G., Smith, M. A., Moreira, P. I., et al. (2010). A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(2), 401–412.

    Article  Google Scholar 

  10. Vives-Bauza, C., & Przedborski, S. (2011). Mitophagy: The latest problem for Parkinson’s disease. Trends in Molecular Medicine, 17(3), 158–165.

    Article  CAS  Google Scholar 

  11. Zhang, X., Yan, H., Yuan, Y., Gao, J., Shen, Z., Cheng, Y., Shen, Y., Wang, R. R., Wang, X., Hu, W. W., & Wang, G. (2013). Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, 9(9), 1321–1333.

    Article  CAS  Google Scholar 

  12. Zuo, W., Zhang, S., Xia, C. Y., Guo, X. F., He, W. B., & Chen, N. H. (2014). Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: The role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology, 86, 103–115.

    Article  CAS  Google Scholar 

  13. Huang, C., Andres, A. M., Ratliff, E. P., Hernandez, G., Lee, P., & Gottlieb, R. A. (2011). Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One, 6(6), e20975.

    Article  CAS  Google Scholar 

  14. Li, Q., Zhang, T., Wang, J., Zhang, Z., Zhai, Y., Yang, G. Y., & Sun, X. (2014). Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochemical and Biophysical Research Communications, 444, 182–188.

    Article  CAS  Google Scholar 

  15. Youle, R. J., & Narendra, D. P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9.

    Article  CAS  Google Scholar 

  16. Kroemer, G., Dallaporta, B., & Resche-Rigon, M. (1998). The mitochondrial death/life regulator in apoptosis and necrosis. Annual Review of Physiology, 60(1), 619–642.

    Article  CAS  Google Scholar 

  17. Chen, H., & Chan, D. C. (2010). Physiological functions of mitochondrial fusion. Annals of the New York Academy of Sciences, 1201, 21–25.

    Article  CAS  Google Scholar 

  18. Chen, H., Chomyn, A., & Chan, D. C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. The Journal of Biological Chemistry, 280, 26185–26192.

    Article  CAS  Google Scholar 

  19. Detmer, S. A., & Chan, D. C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology, 8, 870–879.

    Article  CAS  Google Scholar 

  20. Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annaert, W., D'Adamio, L., & Derks, C. (2006). Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell, 126(1), 163–175.

    Article  CAS  Google Scholar 

  21. Züchner, S., Mersiyanova, I. V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E. L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., & Parman, Y. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genetics, 36(5), 449.

    Article  Google Scholar 

  22. Alexander, C., Votruba, M., Pesch, U. E., Thiselton, D. L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo-Kottler, B., Auburger, G., & Bhattacharya, S. S. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genetics, 26(2), 211.

    Article  CAS  Google Scholar 

  23. Chang, C. R., Manlandro, C. M., Arnoult, D., Stadler, J., Posey, A. E., Hill, R. B., & Blackstone, C. (2010). A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. Journal of Biological Chemistry, 285(42), 32494–32503.

    Article  CAS  Google Scholar 

  24. James, D. I., Parone, P. A., Mattenberger, Y., & Martinou, J. C. (2003). hFis1, a novel component of the mammalian mitochondrial fission machinery. The Journal of Biological Chemistry, 278, 36373–36379.

    Article  CAS  Google Scholar 

  25. Smirnova, E., Shurland, D. L., Ryazantsev, S. N., & van der Bliek, A. M. (1998). A human dynamin-related protein controls the distribution of mitochondria. The Journal of Cell Biology, 143, 351–358.

    Article  CAS  Google Scholar 

  26. Ishihara, N., Nomura, M., & Jofuku, A. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biology, 11, 958–966.

    Article  CAS  Google Scholar 

  27. Hoppins, S., Lackner, L., & Nunnari, J. (2007). The machines that divide and fuse mitochondria. Annual Review of Biochemistry, 76, 751–780.

    Article  CAS  Google Scholar 

  28. Takagi, H., Matsui, Y., Hirotani, S., Sakoda, H., Asano, T., & Sadoshima, J. (2007). AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy, 3, 405–407.

    Article  CAS  Google Scholar 

  29. Mengesdorf, T., Jensen, P. H., Mies, G., Aufenberg, C., & Paschen, W. (2002). Down-regulation of parkin protein in transient focal cerebral ischemia: A link between stroke and degenerative disease? Proceedings of the National Academy of Sciences of the United States of America, 99, 15042–15047.

    Article  CAS  Google Scholar 

  30. Tang, Y. C., Tian, H. X., Yi, T., & Chen, H. B. (2016). The critical roles of mitophagy in cerebral ischemia. Protein & Cell, 7(10), 699–713.

    Article  CAS  Google Scholar 

  31. Wang, P., Guan, Y. F., Du, H., Zhai, Q. W., Su, D. F., & Miao, C. Y. (2012). Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 8(1), 77–87.

    Article  CAS  Google Scholar 

  32. Yamamori, T., Ike, S., Bo, T., Sasagawa, T., Sakai, Y., Suzuki, M., Yamamoto, K., Nagane, M., Yasui, H., & Inanami, O. (2015). Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after x-irradiation. Molecular Biology of the Cell, 26(25), 4607–4617.

    Article  CAS  Google Scholar 

  33. Gomes, L. C., Di Benedetto, G., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13, 589–598.

    Article  CAS  Google Scholar 

  34. Kumari, S., Anderson, L., Farmer, S., Mehta, S. L., & Li, P. A. (2012). Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Translational Stroke Research, 3, 296–304.

    Article  CAS  Google Scholar 

  35. Zuo, W., Yang, P. F., Chen, J., Zhang, Z., & Chen, N. H. (2016). Drp-1, a potential therapeutic target for brain ischaemic stroke. British Journal of Pharmacology, 173(10), 1665–1677.

    Article  CAS  Google Scholar 

  36. Gurung, P., Lukens, J. R., & Kanneganti, T. D. (2015). Mitochondria: Diversity in the regulation of the NLRP3 inflammasome. Trends in Molecular Medicine, 21, 193–201.

    Article  CAS  Google Scholar 

  37. Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., Wong, J., He, F., Boassa, D., Perkins, G., Ali, S. R., & McGeough, M. D. (2016). NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell, 164(5), 896–910.

    Article  CAS  Google Scholar 

  38. Zhao, J., Mou, Y., Bernstock, J. D., Klimanis, D., Wang, S., Spatz, M., Maric, D., Johnson, K., Klinman, D. M., Li, X., & Li, X. (2015). Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats. PLoS One, 10(10), e0140772.

    Article  Google Scholar 

  39. Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S., & Greene, L. A. (2010). Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. The Journal of Neuroscience, 30, 1166–1175.

    Article  CAS  Google Scholar 

  40. Miclescu, A., Sharma, H. S., Martijn, C., & Wiklund, L. (2010). Methylene blue protects the cortical blood–brain barrier against ischemia/reperfusion-induced disruptions. Critical Care Medicine, 38, 2199–2206.

    Article  CAS  Google Scholar 

  41. Di, Y., He, Y. L., Zhao, T., Huang, X., Wu, K. W., Liu, S. H., Zhao, Y. Q., Fan, M., Wu, L. Y., & Zhu, L. L. (2015). Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy. Molecular Medicine, 21, 420–429.

    Article  CAS  Google Scholar 

  42. Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. Journal of Leukocyte Biology, 87, 779–789.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Paliwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paliwal, P., Krishnamurthy, S., Kumar, G., Patnaik, R. (2019). Critical Role of Mitochondrial Autophagy in Cerebral Stroke. In: Patnaik, R., Tripathi, A., Dwivedi, A. (eds) Advancement in the Pathophysiology of Cerebral Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-13-1453-7_6

Download citation

Publish with us

Policies and ethics