Skip to main content

Muscle Atrophy in Chronic Kidney Disease

  • Chapter
  • First Online:
Muscle Atrophy

Abstract

The renal damage and loss of kidney function that characterize chronic kidney disease (CKD) cause several complex systemic alterations that affect muscular homeostasis, leading to loss of muscle mass and, ultimately, to muscle atrophy. CKD-induced muscle atrophy is highly prevalent and, in association with common CKD comorbidities, is responsible for the reduction of physical capacity, functional independence, and an increase in the number of hospitalizations and mortality rates. Thus, this chapter summarizes current knowledge about the complex interactions between CKD factors and the pathophysiological mechanisms that induce muscle atrophy that, despite growing interest, are not yet fully understood. The current treatments of CKD-induced muscle atrophy are multidisciplinary, including correction of metabolic acidosis, nutritional supplementation, reducing insulin resistance, administration of androgenic steroids, resisted and aerobic exercise, neuromuscular electrical stimulation, and inspiratory muscle training. However, further studies are still needed to strengthen the comprehension of CKD-induced muscle atrophy and the better treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Júnior JER (2004) Doença Renal Crônica: Definição, Epidemiologia e Classificação. J Bras Nefrol 26(3):1–3

    Google Scholar 

  2. Barros E, Manfro RC, Thomé FS, Gonçalves LF (2006) Nefrologia: Rotinas, diagnóstico e tratamento. 3ª edn

    Google Scholar 

  3. Diesel W, Emms M, Knight BK, Noakes TD, Swanepoel CR, van Zyl SR, Kaschula RO, Sinclair-Smith CC (1993) Morphologic features of the myopathy associated with chronic renal failure. Am J Kidney Dis 22(5):677–684

    Article  CAS  Google Scholar 

  4. McIntyre CW, Selby NM, Sigrist M, Pearce LE, Mercer TH, Naish PF (2006) Patients receiving maintenance dialysis have more severe functionally significant skeletal muscle wasting than patients with dialysis-independent chronic kidney disease. Nephrol Dial Transplant 21(8):2210–2216. https://doi.org/10.1093/ndt/gfl064

    Article  PubMed  Google Scholar 

  5. Brautbar N (1983) Skeletal myopathy in uremia: abnormal energy metabolism. Kidney Int Suppl 16:S81–S86

    CAS  PubMed  Google Scholar 

  6. Thompson CH, Kemp GJ, Taylor DJ, Ledingham JG, Radda GK, Rajagopalan B (1993) Effect of chronic uraemia on skeletal muscle metabolism in man. Nephrol Dial Transplant 8(3):218–222

    CAS  PubMed  Google Scholar 

  7. Guarnieri G, Toigo G, Situlin R, Faccini L, Coli U, Landini S, Bazzato G, Dardi F, Campanacci L (1983) Muscle biopsy studies in chronically uremic patients: evidence for malnutrition. Kidney Int Suppl 16:S187–S193

    CAS  PubMed  Google Scholar 

  8. Johansen KL, Shubert T, Doyle J, Soher B, Sakkas GK, Kent-Braun JA (2003) Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int 63(1):291–297. https://doi.org/10.1046/j.1523-1755.2003.00704.x

    Article  PubMed  Google Scholar 

  9. Schardong T, Lukrafka J, Garcia V (2008) Avaliação da função pulmonar e da qualidade de vida em pacientes com doença renal crônica submetidos à hemodiálise. J Bras Nefrol 30(1):40–47

    Google Scholar 

  10. Dipp T, da Silva A, Signori L, Strimban T, Nicolodi G, Sbruzzi G, Moreira P, Plentz R (2010) Força muscular respiratória e capacidade funcional na insuficiência renal terminal. Rev Bras Med Esporte 16(4):246–249

    Article  Google Scholar 

  11. DeOreo PB (1997) Hemodialysis patient-assessed functional health status predicts continued survival, hospitalization, and dialysis-attendance compliance. Am J Kidney Dis 30(2):204–212

    Article  CAS  Google Scholar 

  12. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–256. https://doi.org/10.1016/j.jamda.2011.01.003

    Article  PubMed  Google Scholar 

  13. Lamarca F, Carrero JJ, Rodrigues JC, Bigogno FG, Fetter RL, Avesani CM (2014) Prevalence of sarcopenia in elderly maintenance hemodialysis patients: the impact of different diagnostic criteria. J Nutr Health Aging 18(7):710–717. https://doi.org/10.1007/s12603-014-0455-y

    Article  CAS  PubMed  Google Scholar 

  14. Kim JK, Choi SR, Choi MJ, Kim SG, Lee YK, Noh JW, Kim HJ, Song YR (2014) Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin Nutr 33(1):64–68. https://doi.org/10.1016/j.clnu.2013.04.002

    Article  PubMed  Google Scholar 

  15. Souza VA, Oliveira D, Mansur HN, Fernandes NM, Bastos MG (2015) Sarcopenia in chronic kidney disease. J Bras Nefrol 37(1):98–105. https://doi.org/10.5935/0101-2800.20150014

    Article  PubMed  Google Scholar 

  16. Afsar B, Siriopol D, Aslan G, Eren OC, Dagel T, Kilic U, Kanbay A, Burlacu A, Covic A, Kanbay M (2018) The impact of exercise on physical function, cardiovascular outcomes and quality of life in chronic kidney disease patients: a systematic review. Int Urol Nephrol 50:885. https://doi.org/10.1007/s11255-018-1790-4

    Article  PubMed  Google Scholar 

  17. Schardong J, Dipp T, Bozzeto CB, da Silva MG, Baldissera GL, Ribeiro RC, Valdemarca BP, do Pinho AS, Sbruzzi G, Plentz RDM (2017) Effects of intradialytic neuromuscular electrical stimulation on strength and muscle architecture in patients with chronic kidney failure: Randomized Clinical Trial. Artif Organs 41:1049. https://doi.org/10.1111/aor.12886

    Article  PubMed  Google Scholar 

  18. de Medeiros AIC, Fuzari HKB, Rattesa C, Brandão DC, de Melo Marinho P (2017) Inspiratory muscle training improves respiratory muscle strength, functional capacity and quality of life in patients with chronic kidney disease: a systematic review. J Physiother 63(2):76–83. https://doi.org/10.1016/j.jphys.2017.02.016

    Article  PubMed  Google Scholar 

  19. Avin KG, Moorthi RN (2015) Bone is not alone: the effects of skeletal muscle dysfunction in chronic kidney disease. Curr Osteoporos Rep 13(3):173–179. https://doi.org/10.1007/s11914-015-0261-4

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang XH, Mitch WE (2014) Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10(9):504–516. https://doi.org/10.1038/nrneph.2014.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carrero JJ, Johansen KL, Lindholm B, Stenvinkel P, Cuppari L, Avesani CM (2016) Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int 90(1):53–66. https://doi.org/10.1016/j.kint.2016.02.025

    Article  PubMed  Google Scholar 

  22. Chen CT, Lin SH, Chen JS, Hsu YJ (2013) Muscle wasting in hemodialysis patients: new therapeutic strategies for resolving an old problem. ScientificWorldJournal 2013:643954. https://doi.org/10.1155/2013/643954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Workeneh BT, Mitch WE (2010) Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr 91(4):1128S–1132S. https://doi.org/10.3945/ajcn.2010.28608B

    Article  CAS  PubMed  Google Scholar 

  24. Wang DT, Yang YJ, Huang RH, Zhang ZH, Lin X (2015) Myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems contributing to muscle wasting in chronic kidney disease. Oxidative Med Cell Longev 2015:684965. https://doi.org/10.1155/2015/684965

    Article  CAS  Google Scholar 

  25. Rao M, Jaber BL, Balakrishnan VS (2018) Chronic kidney disease and acquired mitochondrial myopathy. Curr Opin Nephrol Hypertens 27(2):113–120. https://doi.org/10.1097/MNH.0000000000000393

    Article  CAS  PubMed  Google Scholar 

  26. Su Z, Klein JD, Du J, Franch HA, Zhang L, Hassounah F, Hudson MB, Wang XH (2017) Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. Am J Physiol Renal Physiol 312(6):F1128–F1140. https://doi.org/10.1152/ajprenal.00600.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Li R, Workeneh B, Dong Y, Wang X, Hu Z (2012) Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int 82(4):401–411. https://doi.org/10.1038/ki.2012.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han HQ, Zhou X, Mitch WE, Goldberg AL (2013) Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol 45(10):2333–2347. https://doi.org/10.1016/j.biocel.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Rajan V, Lin E, Hu Z, Han HQ, Zhou X, Song Y, Min H, Wang X, Du J, Mitch WE (2011) Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J 25(5):1653–1663. https://doi.org/10.1096/fj.10-176917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang XH, Zhang L, Mitch WE, LeDoux JM, Hu J, Du J (2010) Caspase-3 cleaves specific 19 S proteasome subunits in skeletal muscle stimulating proteasome activity. J Biol Chem 285(28):21249–21257. https://doi.org/10.1074/jbc.M109.041707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Workeneh BT, Rondon-Berrios H, Zhang L, Hu Z, Ayehu G, Ferrando A, Kopple JD, Wang H, Storer T, Fournier M, Lee SW, Du J, Mitch WE (2006) Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions. J Am Soc Nephrol 17(11):3233–3239. https://doi.org/10.1681/ASN.2006020131

    Article  CAS  PubMed  Google Scholar 

  32. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670. https://doi.org/10.1038/ncomms7670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45(10):2121–2129. https://doi.org/10.1016/j.biocel.2013.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang XH, Du J, Klein JD, Bailey JL, Mitch WE (2009) Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. Kidney Int 76(7):751–759. https://doi.org/10.1038/ki.2009.260

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Wang XH, Wang H, Du J, Mitch WE (2010) Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol 21(3):419–427. https://doi.org/10.1681/ASN.2009060571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castellino P, Solini A, Luzi L, Barr JG, Smith DJ, Petrides A, Giordano M, Carroll C, DeFronzo RA (1992) Glucose and amino acid metabolism in chronic renal failure: effect of insulin and amino acids. Am J Phys 262(2 Pt 2):F168–F176. https://doi.org/10.1152/ajprenal.1992.262.2.F168

    Article  CAS  Google Scholar 

  37. Adey D, Kumar R, McCarthy JT, Nair KS (2000) Reduced synthesis of muscle proteins in chronic renal failure. Am J Phys Endocrinol Metab 278(2):E219–E225. https://doi.org/10.1152/ajpendo.2000.278.2.E219

    Article  CAS  Google Scholar 

  38. Gordon BS, Kelleher AR, Kimball SR (2013) Regulation of muscle protein synthesis and the effects of catabolic states. Int J Biochem Cell Biol 45(10):2147–2157. https://doi.org/10.1016/j.biocel.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen W, Abramowitz MK (2014) Metabolic acidosis and the progression of chronic kidney disease. BMC Nephrol 15:55. https://doi.org/10.1186/1471-2369-15-55

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fahal IH (2014) Uraemic sarcopenia: aetiology and implications. Nephrol Dial Transplant 29(9):1655–1665. https://doi.org/10.1093/ndt/gft070

    Article  CAS  PubMed  Google Scholar 

  41. Akchurin OM, Kaskel F (2015) Update on inflammation in chronic kidney disease. Blood Purif 39(1–3):84–92. https://doi.org/10.1159/000368940

    Article  CAS  PubMed  Google Scholar 

  42. Rosengren BI, Sagstad SJ, Karlsen TV, Wiig H (2013) Isolation of interstitial fluid and demonstration of local proinflammatory cytokine production and increased absorptive gradient in chronic peritoneal dialysis. Am J Physiol Renal Physiol 304(2):F198–F206. https://doi.org/10.1152/ajprenal.00293.2012

    Article  CAS  PubMed  Google Scholar 

  43. Modaresi A, Nafar M, Sahraei Z (2015) Oxidative stress in chronic kidney disease. Iran J Kidney Dis 9(3):165–179

    PubMed  Google Scholar 

  44. Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, Carella M, Schena FP, Grandaliano G, Pertosa G (2009) Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics 10:388. https://doi.org/10.1186/1471-2164-10-388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ori Y, Bergman M, Bessler H, Zingerman B, Levy-Drummer RS, Gafter U, Salman H (2013) Cytokine secretion and markers of inflammation in relation to acidosis among chronic hemodialysis patients. Blood Purif 35(1–3):181–186. https://doi.org/10.1159/000346689

    Article  CAS  PubMed  Google Scholar 

  46. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39. https://doi.org/10.1242/dmm.010389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jean G, Souberbielle JC, Chazot C (2017) Vitamin D in chronic kidney disease and dialysis patients. Nutrients 9(4). https://doi.org/10.3390/nu9040328

    Article  Google Scholar 

  48. Bhat M, Kalam R, Qadri SS, Madabushi S, Ismail A (2013) Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 154(11):4018–4029. https://doi.org/10.1210/en.2013-1369

    Article  CAS  PubMed  Google Scholar 

  49. Bataille S, Landrier JF, Astier J, Giaime P, Sampol J, Sichez H, Ollier J, Gugliotta J, Serveaux M, Cohen J, Darmon P (2016) The “dose-effect” relationship between 25-Hydroxyvitamin D and muscle strength in hemodialysis patients favors a normal threshold of 30 ng/mL for plasma 25-Hydroxyvitamin D. J Ren Nutr 26(1):45–52. https://doi.org/10.1053/j.jrn.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  50. Filipov JJ, Zlatkov BK, Dimitrov EP, Svinarov D (2015) Relationship between vitamin D status and immunosuppressive therapy in kidney transplant recipients. Biotechnol Biotechnol Equip 29(2):331–335. https://doi.org/10.1080/13102818.2014.995415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ngai M, Lin V, Wong HC, Vathsala A, How P (2014) Vitamin D status and its association with mineral and bone disorder in a multi-ethnic chronic kidney disease population. Clin Nephrol 82(4):231–239. https://doi.org/10.5414/cn108182

    Article  CAS  PubMed  Google Scholar 

  52. Kim SM, Choi HJ, Lee JP, Kim DK, Oh YK, Kim YS, Lim CS (2014) Prevalence of vitamin D deficiency and effects of supplementation with cholecalciferol in patients with chronic kidney disease. J Ren Nutr 24(1):20–25. https://doi.org/10.1053/j.jrn.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  53. Cigarran S, Pousa M, Castro MJ, Gonzalez B, Martinez A, Barril G, Aguilera A, Coronel F, Stenvinkel P, Carrero JJ (2013) Endogenous testosterone, muscle strength, and fat-free mass in men with chronic kidney disease. J Ren Nutr 23(5):e89–e95. https://doi.org/10.1053/j.jrn.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  54. Anderson LJ, Liu H, Garcia JM (2017) Sex differences in muscle wasting. Adv Exp Med Biol 1043:153–197. https://doi.org/10.1007/978-3-319-70178-3_9

    Article  PubMed  Google Scholar 

  55. Carrero JJ, Qureshi AR, Nakashima A, Arver S, Parini P, Lindholm B, Barany P, Heimburger O, Stenvinkel P (2011) Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant 26(1):184–190. https://doi.org/10.1093/ndt/gfq397

    Article  CAS  PubMed  Google Scholar 

  56. Stenvinkel P, Carrero JJ, von Walden F, Ikizler TA, Nader GA (2016) Muscle wasting in end-stage renal disease promulgates premature death: established, emerging and potential novel treatment strategies. Nephrol Dial Transplant 31(7):1070–1077. https://doi.org/10.1093/ndt/gfv122

    Article  PubMed  Google Scholar 

  57. Garibotto G, Russo R, Sofia A, Ferone D, Fiorini F, Cappelli V, Tarroni A, Gandolfo MT, Vigo E, Valli A, Arvigo M, Verzola D, Ravera G, Minuto F (2008) Effects of uremia and inflammation on growth hormone resistance in patients with chronic kidney diseases. Kidney Int 74(7):937–945. https://doi.org/10.1038/ki.2008.345

    Article  CAS  PubMed  Google Scholar 

  58. Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T (2009) Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol 4(12):1901–1906. https://doi.org/10.2215/CJN.01970309

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kosmadakis GC, Bevington A, Smith AC, Clapp EL, Viana JL, Bishop NC, Feehally J (2010) Physical exercise in patients with severe kidney disease. Nephron Clin Pract 115(1):c7–c16. https://doi.org/10.1159/000286344

    Article  CAS  PubMed  Google Scholar 

  60. Morishita Y, Kubo K, Miki A, Ishibashi K, Kusano E, Nagata D (2014) Positive association of vigorous and moderate physical activity volumes with skeletal muscle mass but not bone density or metabolism markers in hemodialysis patients. Int Urol Nephrol 46(3):633–639. https://doi.org/10.1007/s11255-014-0662-9

    Article  CAS  PubMed  Google Scholar 

  61. Morishita Y, Nagata D (2015) Strategies to improve physical activity by exercise training in patients with chronic kidney disease. Int J Nephrol Renovasc Dis 8:19–24. https://doi.org/10.2147/IJNRD.S65702

    Article  PubMed  PubMed Central  Google Scholar 

  62. Checherita IA, Turcu F, Dragomirescu RF, Ciocalteu A (2010) Chronic complications in hemodialysis: correlations with primary renal disease. Romanian J Morphol Embryol = Revue roumaine de morphologie et embryologie 51(1):21–26

    CAS  Google Scholar 

  63. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127(5 Suppl):990S–991S

    Article  CAS  Google Scholar 

  64. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69(5):547–558. https://doi.org/10.1093/gerona/glu010

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fahal IH, Ahmad R, Edwards RH (1996) Muscle weakness in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 16(Suppl 1):S419–S423

    PubMed  Google Scholar 

  66. Roshanravan B, Gamboa J, Wilund K (2017) Exercise and CKD: skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. Am J Kidney Dis 69(6):837–852. https://doi.org/10.1053/j.ajkd.2017.01.051

    Article  PubMed  PubMed Central  Google Scholar 

  67. Johansen KL, Kaysen GA, Young BS, Hung AM, da Silva M, Chertow GM (2003) Longitudinal study of nutritional status, body composition, and physical function in hemodialysis patients. Am J Clin Nutr 77(4):842–846

    Article  CAS  Google Scholar 

  68. Martinson M, Ikizler TA, Morrell G, Wei G, Almeida N, Marcus RL, Filipowicz R, Greene TH, Beddhu S (2014) Associations of body size and body composition with functional ability and quality of life in hemodialysis patients. Clin J Am Soc Nephrol 9(6):1082–1090. https://doi.org/10.2215/CJN.09200913

    Article  PubMed  PubMed Central  Google Scholar 

  69. Isoyama N, Qureshi AR, Avesani CM, Lindholm B, Bàràny P, Heimbürger O, Cederholm T, Stenvinkel P, Carrero JJ (2014) Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin J Am Soc Nephrol 9(10):1720–1728. https://doi.org/10.2215/CJN.10261013

    Article  PubMed  PubMed Central  Google Scholar 

  70. Prezant DJ (1990) Effect of uremia and its treatment on pulmonary function. Lung 168(1):1–14

    Article  CAS  Google Scholar 

  71. Edwards R (1981) Human muscle function and fatigue. In: Human muscle fatigue: physiological mechanisms, vol 82. Pitman Medical Books, London

    Google Scholar 

  72. Fahal IH, Bell GM, Bone JM, Edwards RH (1997) Physiological abnormalities of skeletal muscle in dialysis patients. Nephrol Dial Transplant 12(1):119–127

    Article  CAS  Google Scholar 

  73. Ahonen RE (1980) Light microscopic study of striated muscle in uremia. Acta Neuropathol 49(1):51–55

    Article  CAS  Google Scholar 

  74. Fahal I (1997) An objective analysis of muscle weakness and fatigue in renal dialysis patients. University of Liverpool, Liverpool

    Google Scholar 

  75. Kohl LM, Signori LU, Ribeiro RA, Silva AM, Moreira PR, Dipp T, Sbruzzi G, Lukrafka JL, Plentz RD (2012) Prognostic value of the six-minute walk test in end-stage renal disease life expectancy: a prospective cohort study. Clinics (Sao Paulo) 67(6):581–586

    Article  Google Scholar 

  76. Kovesdy CP, Kopple JD, Kalantar-Zadeh K (2013) Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr 97(6):1163–1177. https://doi.org/10.3945/ajcn.112.036418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, Kuhlmann MK, Stenvinkel P, TerWee P, Teta D, Wang AY, Wanner C, Metabolism ISoRNa (2013) Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 84(6):1096–1107. https://doi.org/10.1038/ki.2013.147

    Article  CAS  PubMed  Google Scholar 

  78. Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar-Zadeh K, Kaysen G, Mitch WE, Price SR, Wanner C, Wang AY, ter Wee P, Franch HA (2013) Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr 23(2):77–90. https://doi.org/10.1053/j.jrn.2013.01.001

    Article  PubMed  Google Scholar 

  79. Łoniewski I, Wesson DE (2014) Bicarbonate therapy for prevention of chronic kidney disease progression. Kidney Int 85(3):529–535. https://doi.org/10.1038/ki.2013.401

    Article  CAS  PubMed  Google Scholar 

  80. Stevens PE, Levin A, Members KDIGOCKDGDWG (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158(11):825–830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007

    Article  PubMed  Google Scholar 

  81. Vashistha T, Kalantar-Zadeh K, Molnar MZ, Torlén K, Mehrotra R (2013) Dialysis modality and correction of uremic metabolic acidosis: relationship with all-cause and cause-specific mortality. Clin J Am Soc Nephrol 8(2):254–264. https://doi.org/10.2215/CJN.05780612

    Article  CAS  PubMed  Google Scholar 

  82. Foundation NK (2003) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42 (4 Suppl 3):S1–91

    Google Scholar 

  83. Wang X, Hu Z, Hu J, Du J, Mitch WE (2006) Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147(9):4160–4168. https://doi.org/10.1210/en.2006-0251

    Article  CAS  PubMed  Google Scholar 

  84. Palmer BF (1999) Sexual dysfunction in uremia. J Am Soc Nephrol 10(6):1381–1388

    CAS  PubMed  Google Scholar 

  85. Sun DF, Chen Y, Rabkin R (2006) Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia. Kidney Int 70(3):453–459. https://doi.org/10.1038/sj.ki.5001532

    Article  CAS  PubMed  Google Scholar 

  86. Macdonald JH, Marcora SM, Jibani MM, Kumwenda MJ, Ahmed W, Lemmey AB (2007) Nandrolone decanoate as anabolic therapy in chronic kidney disease: a randomized phase II dose-finding study. Nephron Clin Pract 106(3):c125–c135. https://doi.org/10.1159/000103000

    Article  CAS  PubMed  Google Scholar 

  87. Castaneda C, Gordon PL, Uhlin KL, Levey AS, Kehayias JJ, Dwyer JT, Fielding RA, Roubenoff R, Singh MF (2001) Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann Intern Med 135(11):965–976

    Article  CAS  Google Scholar 

  88. Lewis MI, Fournier M, Wang H, Storer TW, Casaburi R, Kopple JD (2015) Effect of endurance and/or strength training on muscle fiber size, oxidative capacity, and capillarity in hemodialysis patients. J Appl Physiol (1985) 119(8):865–871. https://doi.org/10.1152/japplphysiol.01084.2014

    Article  CAS  Google Scholar 

  89. Stray-Gundersen J, Howden EJ, Parsons DB, Thompson JR (2016) Neither hematocrit normalization nor exercise training restores oxygen consumption to normal levels in hemodialysis patients. J Am Soc Nephrol 27(12):3769–3779. https://doi.org/10.1681/ASN.2015091034

    Article  PubMed  PubMed Central  Google Scholar 

  90. Balakrishnan VS, Rao M, Menon V, Gordon PL, Pilichowska M, Castaneda F, Castaneda-Sceppa C (2010) Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin J Am Soc Nephrol 5(6):996–1002. https://doi.org/10.2215/CJN.09141209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Viana JL, Kosmadakis GC, Watson EL, Bevington A, Feehally J, Bishop NC, Smith AC (2014) Evidence for anti-inflammatory effects of exercise in CKD. J Am Soc Nephrol 25(9):2121–2130. https://doi.org/10.1681/ASN.2013070702

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kouidi E, Albani M, Natsis K, Megalopoulos A, Gigis P, Guiba-Tziampiri O, Tourkantonis A, Deligiannis A (1998) The effects of exercise training on muscle atrophy in haemodialysis patients. Nephrol Dial Transplant 13(3):685–699

    Article  CAS  Google Scholar 

  93. Segura-Ortí E (2010) [Exercise in haemodyalisis patients: a literature systematic review]. Nefrologia 30(2):236–246. https://doi.org/10.3265/Nefrologia.pre2010.Jan.10229

  94. Heiwe S, Jacobson SH (2014) Exercise training in adults with CKD: a systematic review and meta-analysis. Am J Kidney Dis 64(3):383–393. https://doi.org/10.1053/j.ajkd.2014.03.020

    Article  PubMed  Google Scholar 

  95. Barcellos FC, Santos IS, Umpierre D, Bohlke M, Hallal PC (2015) Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review. Clin Kidney J 8(6):753–765. https://doi.org/10.1093/ckj/sfv099

    Article  PubMed  PubMed Central  Google Scholar 

  96. Koufaki P, Greenwood S, Painter P, Mercer T (2015) The BASES expert statement on exercise therapy for people with chronic kidney disease. J Sports Sci 33(18):1902–1907. https://doi.org/10.1080/02640414.2015.1017733

    Article  PubMed  Google Scholar 

  97. Smart NA, Williams AD, Levinger I, Selig S, Howden E, Coombes JS, Fassett RG (2013) Exercise & Sports Science Australia (ESSA) position statement on exercise and chronic kidney disease. J Sci Med Sport 16(5):406–411. https://doi.org/10.1016/j.jsams.2013.01.005

    Article  PubMed  Google Scholar 

  98. Weiner P, Ganem R, Zamir D, Zonder H (1996) Specific inspiratory muscle training in chronic hemodialysis. Harefuah 130(2):73–76 144

    CAS  PubMed  Google Scholar 

  99. Figueiredo RR, Castro AA, Napoleone FM, Faray L, de Paula Júnior AR, Osório RA (2012) Respiratory biofeedback accuracy in chronic renal failure patients: a method comparison. Clin Rehabil 26(8):724–732. https://doi.org/10.1177/0269215511431088

    Article  PubMed  Google Scholar 

  100. McConnell AK, Romer LM (2004) Respiratory muscle training in healthy humans: resolving the controversy. Int J Sports Med 25(4):284–293. https://doi.org/10.1055/s-2004-815827

    Article  CAS  PubMed  Google Scholar 

  101. Ray AD, Pendergast DR, Lundgren CE (2010) Respiratory muscle training reduces the work of breathing at depth. Eur J Appl Physiol 108(4):811–820. https://doi.org/10.1007/s00421-009-1275-3

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Della Méa Plentz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schardong, J., Marcolino, M.A.Z., Plentz, R.D.M. (2018). Muscle Atrophy in Chronic Kidney Disease. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_18

Download citation

Publish with us

Policies and ethics