Skip to main content

Mitochondria Genome Mutations and Cardiovascular Diseases

  • Chapter
  • First Online:
Heart Genomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 16))

  • 396 Accesses

Abstract

The cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality across the world. CVDs have multifactorial etiologies including environmental, lifestyle, and genetic factors. Mitochondria (mt) are indispensable organelles harboring a 16,569 base-pair, circular DNA genome that encodes 13 proteins involved in electron transport and oxidative phosphorylation system (OXPHOS). Critical components of OXPHOS are encoded by the mitochondrial DNAs (mtDNAs). Any mutation in this genome might impair the mitochondrial function leading to increased oxidative stress, inflammation, and cell death, which are deleterious factors to cardiovascular system. There is a growing body of evidence in support of the roles of mitochondrial genome mutations in the pathogenesis of CVDs, including cardiomyopathies, hypertension, atherosclerosis, inflammation, etc. Consequently, the mtDNA genome mutations might represent promising molecular biomarkers or therapeutic targets for CVDs. In this review, we focused on the state-of-the-art studies about mitochondrial genome mutations associated with CVDs, seeking for their potential diagnosis and treatment significances in clinical practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja P, Wanagat J, Wang Z, et al. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation. 2013;127:1957–67.

    Article  CAS  Google Scholar 

  • Alila-Fersi O, Chamkha I, Majdoub I, et al. Co segregation of the m.1555A>G mutation in the MT-RNR1 gene and mutations in MT-ATP6 gene in a family with dilated mitochondrial cardiomyopathy and hearing loss: a whole mitochondrial genome screening. Biochem Biophys Res Commun. 2017;484:71–8.

    Article  CAS  Google Scholar 

  • Ashar FN, Zhang Y, Longchamps RJ, et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017;2:1247–55.

    Article  Google Scholar 

  • Balakrishnan VS, Rao M, Menon V, et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:996–1002.

    Article  CAS  Google Scholar 

  • Bliksoen M, Mariero LH, Torp MK, et al. Extracellular mtDNA activates NF-kappaB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016;111:42.

    Article  Google Scholar 

  • Bobba A, Giannattasio S, Pucci A, Lippolis R, Camaschella C, Marra E. Characterization of mitochondrial DNA in primary cardiomyopathies. Clin Chim Acta. 1995;243:181–9.

    Article  CAS  Google Scholar 

  • Botto N, Berti S, Manfredi S, et al. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res. 2005;570:81–8.

    Article  CAS  Google Scholar 

  • Chen X, An X, Chen D, et al. Chronic exercise training improved aortic endothelial and mitochondrial function via an AMPKalpha2-dependent manner. Front Physiol. 2016;7:631.

    PubMed  PubMed Central  Google Scholar 

  • Dai DF, Chen T, Wanagat J, et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell. 2010;9:536–44.

    Article  CAS  Google Scholar 

  • Di Giovanni S, Mirabella M, Spinazzola A, et al. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology. 2001;57:515–8.

    Article  Google Scholar 

  • DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001;106:18–26.

    Article  CAS  Google Scholar 

  • Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1077.

    Article  Google Scholar 

  • Du H, Li L, Bennett D, et al. Fresh fruit consumption and major cardiovascular disease in China. N Engl J Med. 2016;374:1332–43.

    Article  CAS  Google Scholar 

  • Elango S, Govindaraj P, Vishwanadha VP, et al. Analysis of mitochondrial genome revealed a rare 50 bp deletion and substitutions in a family with hypertension. Mitochondrion. 2011;11:878–85.

    Article  CAS  Google Scholar 

  • El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med. 2016;3:25.

    Article  Google Scholar 

  • El-Hattab AW, Emrick LT, Craigen WJ, Scaglia F. Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Mol Genet Metab. 2012;107:247–52.

    Article  CAS  Google Scholar 

  • El-Hattab AW, Emrick LT, Chanprasert S, Craigen WJ, Scaglia F. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome. Int J Biochem Cell B. 2014;48:85–91.

    Article  CAS  Google Scholar 

  • El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116:4–12.

    Article  CAS  Google Scholar 

  • Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83:254–60.

    Article  CAS  Google Scholar 

  • Enns GM. Treatment of mitochondrial disorders: antioxidants and beyond. J Child Neurol. 2014;29:1235–40.

    Article  Google Scholar 

  • Fallah Tafti M, Khatami M, Rezaei S, Heidari MM, Hadadzadeh M. Novel and heteroplasmic mutations in mitochondrial tRNA genes in Brugada syndrome. Cardiol J. 2018;25:113–9.

    Article  Google Scholar 

  • Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol. 2014;177:754–63.

    Article  Google Scholar 

  • Fuentes RM, Notkola IL, Shemeikka S, Tuomilehto J, Nissinen A. Familial aggregation of blood pressure: a population-based family study in eastern Finland. J Hum Hypertens. 2000;14:441–5.

    Article  CAS  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.

    PubMed  Google Scholar 

  • Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J. 2003;24:280–8.

    Article  CAS  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88:529–35.

    Article  CAS  Google Scholar 

  • Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation. 2005;112:683–90.

    Article  CAS  Google Scholar 

  • Jiang P, Wang M, Xue L, et al. A hypertension-associated tRNAAla mutation alters tRNA metabolism and mitochondrial function. Mol Cell Biol. 2016;36:1920–30.

    Article  Google Scholar 

  • Jonckheere AI, Hogeveen M, Nijtmans L, et al. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. BMJ Case Rep. 2009;2009:bcr07.2008.0504.

    Article  Google Scholar 

  • Kang HC, Lee YM, Kim HD, Lee JS, Slama A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48:82–8.

    CAS  PubMed  Google Scholar 

  • Kang E, Wu J, Gutierrez NM, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540:270–5.

    Article  CAS  Google Scholar 

  • Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F, Tian R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res. 2010;106:1541–8.

    Article  CAS  Google Scholar 

  • Khatami M, Houshmand M, Sadeghizadeh M, et al. Accumulation of mitochondrial genome variations in Persian LQTS patients: a possible risk factor? Cardiovasc Pathol. 2010;19:e21–7.

    Article  CAS  Google Scholar 

  • Khatami F, Mehdi Heidari M, Houshmand M. The mitochondrial DNA mutations associated with cardiac arrhythmia investigated in an LQTS family. Iran J Basic Med Sci. 2014;17:656–61.

    PubMed  PubMed Central  Google Scholar 

  • Krebs P, Fan W, Chen YH, et al. Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet. Proc Natl Acad Sci U S A. 2011;108:19678–82.

    Article  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–4.

    Article  CAS  Google Scholar 

  • Lai LP, Tsai CC, Su MJ, et al. Atrial fibrillation is associated with accumulation of aging-related common type mitochondrial DNA deletion mutation in human atrial tissue. Chest. 2003;123:539–44.

    Article  CAS  Google Scholar 

  • Lauritzen KH, Kleppa L, Aronsen JM, et al. Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol. 2015;309:H434–49.

    Article  CAS  Google Scholar 

  • Lev D, Nissenkorn A, Leshinsky-Silver E, et al. Clinical presentations of mitochondrial cardiomyopathies. Pediatr Cardiol. 2004;25:443–50.

    Article  CAS  Google Scholar 

  • Limongelli G, Tome-Esteban M, Dejthevaporn C, Rahman S, Hanna MG, Elliott PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail. 2010;12:114–21.

    Article  CAS  Google Scholar 

  • Liu Y, Li R, Li Z, et al. Mitochondrial transfer RNAMet 4435A>G mutation is associated with maternally inherited hypertension in a Chinese pedigree. Hypertension. 2009;53:1083–90.

    Article  CAS  Google Scholar 

  • Liu S, Bai Y, Huang J, et al. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab. 2013;109:100–6.

    Article  CAS  Google Scholar 

  • Liu Y, Zhu Q, Zhu C, et al. Systematic analysis of the clinical and biochemical characteristics of maternally inherited hypertension in Chinese Han families associated with mitochondrial. BMC Med Genet. 2014;7:73.

    Google Scholar 

  • Liu LP, Cheng K, Ning MA, et al. Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease. Atherosclerosis. 2017;261:105–10.

    Article  CAS  Google Scholar 

  • Lu Z, Chen H, Meng Y, et al. The tRNAMet 4435A>G mutation in the mitochondrial haplogroup G2a1 is responsible for maternally inherited hypertension in a Chinese pedigree. Eur J Hum Genet. 2011;19:1181–6.

    Article  CAS  Google Scholar 

  • Lu Y, Xiao T, Zhang F, et al. Effect of mitochondrial tRNA(Lys) mutation on the clinical and biochemical characteristics of Chinese essential hypertensive subjects. Biochem Biophys Res Commun. 2014;454:500–4.

    Article  CAS  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ. Mitochondrial centrality in heart failure. Heart Fail Rev. 2008;13:137–50.

    Article  Google Scholar 

  • Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol. 2013;305:H459–76.

    Article  CAS  Google Scholar 

  • May-Panloup P, Vignon X, Chretien MF, et al. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol. 2005;3:65.

    Article  Google Scholar 

  • McCarthy CG, Wenceslau CF, Goulopoulou S, et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res. 2015;107:119–30.

    Article  CAS  Google Scholar 

  • McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest. 2013;123:19–26.

    Article  CAS  Google Scholar 

  • Mitrofanov KY, Zhelankin AV, Shiganova GM, et al. Analysis of mitochondrial DNA heteroplasmic mutations A1555G, C3256T, T3336C, capital ES, Cyrillic5178capital A, cyrillic, G12315A, G13513A, G14459A, G14846capital A, cyrillic and G15059A in CHD patients with the history of myocardial infarction. Exp Mol Pathol. 2016;100:87–91.

    Article  CAS  Google Scholar 

  • Mohammed S, Bahitham W, Chan A, Chiu B, Bamforth F, Sergi C. Mitochondrial DNA related cardiomyopathies. Front Biosci (Elite Ed). 2012;4:1706–16.

    Article  Google Scholar 

  • Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–5.

    Article  CAS  Google Scholar 

  • Qin Y, Xue L, Jiang P, et al. Mitochondrial tRNA variants in Chinese subjects with coronary heart disease. J Am Heart Assoc. 2014;3:e000437.

    Article  Google Scholar 

  • Raha S, Merante F, Shoubridge E, et al. Repopulation of rho0 cells with mitochondria from a patient with a mitochondrial DNA point mutation in tRNA(Gly) results in respiratory chain dysfunction. Hum Mutat. 1999;13:245–54.

    Article  CAS  Google Scholar 

  • Richardson J, Irving L, Hyslop LA, et al. Concise reviews: assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells. 2015;33:639–45.

    Article  CAS  Google Scholar 

  • Ruppert V, Nolte D, Aschenbrenner T, Pankuweit S, Funck R, Maisch B. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun. 2004;318:535–43.

    Article  CAS  Google Scholar 

  • Safdar A, Khrapko K, Flynn JM, et al. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice. Skelet Muscle. 2016;6:7.

    Article  Google Scholar 

  • Sazonova M, Budnikov E, Khasanova Z, Sobenin I, Postnov A, Orekhov A. Studies of the human aortic intima by a direct quantitative assay of mutant alleles in the mitochondrial genome. Atherosclerosis. 2009;204:184–90.

    Article  CAS  Google Scholar 

  • Sazonova MA, Zhelankin AV, Barinova VA, et al. Mutations of mitochondrial genome in carotid atherosclerosis. Front Genet. 2015;6:111.

    Article  Google Scholar 

  • Sazonova MA, Shkurat TP, Demakova NA, et al. Mitochondrial genome sequencing in atherosclerosis: what's next? Curr Pharm Des. 2016;22:390–6.

    Article  CAS  Google Scholar 

  • Schwartz F, Duka A, Sun F, Cui J, Manolis A, Gavras H. Mitochondrial genome mutations in hypertensive individuals. Am J Hypertens. 2004;17:629–35.

    Article  CAS  Google Scholar 

  • Skou AS, Tranebjaerg L, Jensen T, Hasle H. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure. J Pediatr. 2014;164:413–5.

    Article  CAS  Google Scholar 

  • Sobenin IA, Sazonova MA, Ivanova MM, et al. Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS One. 2012;7:e46573.

    Article  CAS  Google Scholar 

  • Stocchi L, Polidori E, Potenza L, et al. Mutational analysis of mitochondrial DNA in Brugada syndrome. Cardiovasc Pathol. 2016;25:47–54.

    Article  CAS  Google Scholar 

  • Tang S, Batra A, Zhang Y, Ebenroth ES, Huang T. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion. 2010;10:350–7.

    Article  CAS  Google Scholar 

  • Taylor RW, Giordano C, Davidson MM, et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41:1786–96.

    Article  CAS  Google Scholar 

  • Teng L, Zheng J, Leng J, Ding Y. Clinical and molecular characterization of a Han Chinese family with high penetrance of essential hypertension. Mitochondrial DNA. 2012;23:461–5.

    Article  CAS  Google Scholar 

  • Tian F, Li J, Liu XW, Tong TJ, Zhang ZY. Age-dependent accumulation of mitochondrial DNA deletions in the aortic root of atherosclerosis-prone apolipoprotein E-knockout mice. Arch Gerontol Geriatr. 2016;63:72–7.

    Article  CAS  Google Scholar 

  • Tsuboi M, Hisatome I, Morisaki T, et al. Mitochondrial DNA deletion associated with the reduction of adenine nucleotides in human atrium and atrial fibrillation. Eur J Clin Investig. 2001;31:489–96.

    Article  CAS  Google Scholar 

  • Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283:1482–8.

    Article  CAS  Google Scholar 

  • Wang J, Wilhelmsson H, Graff C, et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet. 1999;21:133–7.

    Article  CAS  Google Scholar 

  • Wang S, Li R, Fettermann A, et al. Maternally inherited essential hypertension is associated with the novel 4263A>G mutation in the mitochondrial tRNAIle gene in a large Han Chinese family. Circ Res. 2011;108:862–70.

    Article  CAS  Google Scholar 

  • Watson B Jr, Khan MA, Desmond RA, Bergman S. Mitochondrial DNA mutations in black Americans with hypertension-associated end-stage renal disease. Am J Kidney Dis. 2001;38:529–36.

    Article  CAS  Google Scholar 

  • Wu B, Ni H, Li J, et al. The impact of circulating mitochondrial DNA on cardiomyocyte apoptosis and myocardial injury after TLR4 activation in experimental autoimmune myocarditis. Cell Physiol Biochem. 2017;42:713–28.

    Article  CAS  Google Scholar 

  • Xu Y, Chen X, Huang H, Liu W. The mitochondrial tRNAAla T5655C mutation may modulate the phenotypic expression of tRNAMet and tRNAGln A4401G mutation in a Han Chinese family with essential hypertension. Int Heart J. 2017;58:95–9.

    Article  Google Scholar 

  • Yamasaki T, Yanishi K, Tateishi S, et al. Late-onset mitochondrial cardiomyopathy triggered by anticancer treatment. Intern Med. 2017;56:1357–61.

    Article  Google Scholar 

  • Yang KC, Bonini MG, Dudley SC Jr. Mitochondria and arrhythmias. Free Radic Biol Med. 2014;71:351–61.

    Article  CAS  Google Scholar 

  • Yu E, Calvert PA, Mercer JR, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128:702–12.

    Article  CAS  Google Scholar 

  • Zhang J, Xu S, Xu Y, et al. Relation of mitochondrial DNA copy number in peripheral blood to postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting. Am J Cardiol. 2017;119:473–7.

    Article  CAS  Google Scholar 

  • Zhu HY, Wang SW, Liu L, et al. A mitochondrial mutation A4401G is involved in the pathogenesis of left ventricular hypertrophy in Chinese hypertensives. Eur J Hum Genet. 2009;17:172–8.

    Article  CAS  Google Scholar 

  • Zinner SH, Levy PS, Kass EH. Familial aggregation of blood pressure in childhood. N Engl J Med. 1971;284:401–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, H., Yu, Y., Li, M., Chen, R. (2018). Mitochondria Genome Mutations and Cardiovascular Diseases. In: Jiang, H., Liu, M. (eds) Heart Genomics. Translational Bioinformatics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-1429-2_4

Download citation

Publish with us

Policies and ethics