Skip to main content

Cardiac Transcriptome Profile in Heart Diseases

  • Chapter
  • First Online:
Book cover Heart Genomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 16))

  • 448 Accesses

Abstract

Heart development is a complex process. It requires morphological and functional changes of multiple cell types that must organize into a complex structure. This process necessitates elaborate control of multiple transcripts’ expression in a temporal and spatial manner. New sequencing technologies, combined with bioinformatics and computational tools, have allowed the scientific community to appreciate the great complexity of the cardiac transcriptome. These will promote the understanding of the complex molecular mechanisms in heart developmental processes. In this chapter, we briefly introduce several major technology platforms of cardiac transcriptome profile and compare the differences between them to realize their better applications in cardiac transcriptomics. Since various cardiac cells play their unique functions in the heart, we describe the expression profile in cardiac development and different conditions by summarizing the expression changes and biomarkers in different cardiac cells. Finally, we review the transcriptomics-based biomarkers or candidate transcripts in several heart diseases including coronary artery disease, congestive heart failure, and common congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aad G, Abbott B, Abdallah J, Abdelalim AA, Abdesselam A, Abdinov O, Abi B, Abramowicz M, Abreu H, Acerbi H. Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at root s(NN)=2.76 TeV with the ATLAS detector at the LHC. Phys Rev Lett. 2010;105(25):252303.

    Article  CAS  Google Scholar 

  • Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, et al. Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell,12,5(2013-07-14). 2013;12(5):890.

    Google Scholar 

  • Archacki S, Wang Q. Expression profiling of cardiovascular disease. Hum Genomics. 2004;1(5):1–16.

    Article  Google Scholar 

  • Bang C, Batkai S, Dangwal S, Gupta S, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136.

    Article  CAS  Google Scholar 

  • Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC. Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol. 2002;160(6):2035–43.

    Article  CAS  Google Scholar 

  • Bochenek G, Häsler R, El Mokhtari NE, König IR, Loos BG, Jepsen S, Rosenstiel P, Schreiber S, Schaefer AS. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22(22):4516.

    Article  CAS  Google Scholar 

  • Busch A, Eken SM, Maegdefessel L. Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. Ann Transl Med. 2016;4(12):236.

    Article  Google Scholar 

  • Calverley DC, Casserly IP, Choudhury QG, Phang TL, Gao B. Platelet gene expression as a biomarker risk stratification tool in acute myocardial infarction: a pilot investigation. Clin Med Insights: Blood Disord,2010,3(2010-07-29). 2010;2010(3):9–15.

    Google Scholar 

  • Cao X, Wang J, Wang Z, Du J, Yuan X, Huang W, Meng J, Gu H, Nie Y, Ji B. MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Lett. 2013;587(10):1548–55.

    Article  CAS  Google Scholar 

  • Catalucci D, Latronico MV, Condorelli G. MicroRNAs control gene expression: importance for cardiac development and pathophysiology. Ann N Y Acad Sci. 2008;1123(1):20.

    Article  CAS  Google Scholar 

  • Chandramohan R, Wu PY, Phan JH, Wang MD. Benchmarking RNA-Seq quantification tools. Conf Proc IEEE Eng Med Biol Soc. 2013;2013(2013):647–50.

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang DZ. microRNAs in cardiovascular development. J Mol Cell Cardiol. 2012;52(5):949.

    Article  CAS  Google Scholar 

  • Chen Y, Park S, Li Y, Missov E, Hou M, Han X, Hall JL, Miller LW, Bache RJ. Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol Genomics. 2003;14(3):251.

    Article  Google Scholar 

  • Choudhary R, Iqbal N, Khusro F, Higginbotham E, Green E, Maisel A. Heart failure biomarkers. J Cardiovasc Transl Res. 2013;6(4):471.

    Article  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, Mcpherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13.

    Article  Google Scholar 

  • Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499.

    Article  Google Scholar 

  • D’alessandra Y, Devanna P, Limana F, Straino S, Di CA, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De SM. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31(22):2765.

    Article  Google Scholar 

  • D’alessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P, Rubino M, Marenzi G, Colombo GI, Achilli F. Diagnostic potential of plasmatic microRNA signatures in stable and unstable angina. PLoS One. 2013;8(11):e80345.

    Article  Google Scholar 

  • Delaughter DM, Bick AG, Wakimoto H, Mckean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W. Single-cell resolution of temporal gene expression during heart development. Dev Cell. 2016;39(4):480.

    Article  CAS  Google Scholar 

  • Devaux Y, Mueller M, Haaf P, Goretti E, Twerenbold R, Zangrando J, Vausort M, Reichlin T, Wildi K, Moehring B. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277(2):260–71.

    Article  CAS  Google Scholar 

  • Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: receptors, signaling pathways and cellular functions. Pharmacol Res. 2015;101:30.

    Article  Google Scholar 

  • Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, Papaioanou S, Tousoulis D. The role of microRNAs in coronary artery disease: from pathophysiology to diagnosis and treatment. Atherosclerosis. 2015;241(2):624.

    Article  CAS  Google Scholar 

  • Espinozalewis RA, Wang DZ. MicroRNAs in heart development. Curr Top Dev Biol. 2012;100(2):279.

    Article  CAS  Google Scholar 

  • Eulalio A, Mano M, Dal FM, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376.

    Article  CAS  Google Scholar 

  • Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677.

    Article  CAS  Google Scholar 

  • Friede KA, Ginsburg GS, Voora D. Gene expression signatures and the spectrum of coronary artery disease. J Cardiovasc Transl Res. 2015;8(6):339.

    Article  Google Scholar 

  • Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, Park A, Snider P, Chandran A, Harvey RP. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res. 2014;114(9):1422–34.

    Article  CAS  Google Scholar 

  • Gao C, Wang Y. Transcriptome complexity in cardiac development and diseases: an expanding universe between genome and phenome. Circ J Off J Jpn Circ Soc. 2014;78(5):1038–47.

    CAS  Google Scholar 

  • Goddeeris MM, Rho S, Petiet A, Davenport CL, Johnson GA, Meyers EN, Klingensmith J. Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development. 2008;135(10):1887–95.

    Article  CAS  Google Scholar 

  • Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand JL, Devaux Y. The function and therapeutic potential of long non-coding RNAs in cardiovascular development and disease. Mol Ther Nucleic Acids. 2017;8(C):494.

    Article  CAS  Google Scholar 

  • Green SM, Green JA, Jr JJ. Natriuretic peptide testing for heart failure therapy guidance in the inpatient and outpatient setting. Am J Ther. 2009;16(2):171.

    Article  Google Scholar 

  • Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206–14.

    Article  CAS  Google Scholar 

  • Healy AM, Pickard MD, Pradhan AD, Wang Y, Chen Z, Croce K, Sakuma M, Shi C, Zago AC, Garasic J. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation. 2006;113(19):2278.

    Article  CAS  Google Scholar 

  • Hoeijmakers WA, Bártfai R, Stunnenberg HG. Transcriptome analysis using RNA-Seq. Methods Mol Biol. 2013;923(923):221.

    CAS  PubMed  Google Scholar 

  • Hoekstra M, Ca VDL, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, Van Berkel TJ, Biessen EA. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394(3):792–7.

    Article  CAS  Google Scholar 

  • Hudson MP, Christenson RH, Newby LK, Kaplan AL, Ohman EM. Cardiac markers: point of care testing. Clin Chim Acta. 1999;284(2):223–37.

    Article  CAS  Google Scholar 

  • Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, Dzau VJ, Liew CC. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics. 2002;10(1):31–44.

    Article  CAS  Google Scholar 

  • Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8(2):228.

    Article  CAS  Google Scholar 

  • Kaynak B, von Heydebreck A, Mebus S, Seelow D, Henig S, Vogel J, Sperling HP, Pregla R, Alexi-Meskeshvili V, Hetzer R. Genome-wide array analysis of normal and malformed human hearts. Circulation. 2003;107(19):2467.

    Article  Google Scholar 

  • Kiliszek M, Burzynska B, Michalak M, Gora M, Winkler A, Maciejak A, Leszczynska A, Gajda E, Kochanowski J, Opolski G. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction. PLoS One. 2012;7(11):e50054.

    Article  CAS  Google Scholar 

  • Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152(3):570–83.

    Article  CAS  Google Scholar 

  • Krishnaswamy G, Kelley J, Yerra L, Smith JK, Chi DS. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res. 1999;19(2):91.

    Article  CAS  Google Scholar 

  • Kuppusamy KT, Jones DC, Sperber H, Madan A, Fischer KA, Rodriguez ML, Pabon L, Zhu WZ, Tulloch NL, Yang X. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A. 2015;112(21):2785–94.

    Article  Google Scholar 

  • Latronico MV, Catalucci D, Condorelli G. MicroRNA and cardiac pathologies. Physiol Genomics. 2008;34(3):239–42.

    Article  CAS  Google Scholar 

  • Lech M, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 2013;1832(7):989–97.

    Article  CAS  Google Scholar 

  • Li T, Cao H, Zhuang J, Wan J, Guan M, Yu B, Li X, Zhang W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta. 2011;412(1–2):66–70.

    Article  CAS  Google Scholar 

  • Li C, Fang Z, Jiang T, Zhang Q, Liu C, Zhang C, Xiang Y. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genet. 2013a;6(1):1–9.

    Article  CAS  Google Scholar 

  • Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, Sun Q, Zhao Z. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS One. 2013b;9(8):e106318.

    Article  Google Scholar 

  • Li J, Cao Y, Ma XJ, Wang HJ, Ma D, Huang GY. Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol. 2013c;168(2):1441.

    Article  Google Scholar 

  • Li LM, Cai WB, Ye Q, Liu JM, Li X, Liao XX. Comparison of plasma microRNA-1 and cardiac troponin T in early diagnosis of patients with acute myocardial infarction. World J Emerg Med. 2014;5(3):182.

    Article  Google Scholar 

  • Li G, Xu A, Sim S, Priest JR, Tian X, Khan T, Quertermous T, Zhou B, Tsao PS, Quake SR. Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells. Dev Cell. 2016;39(4):491.

    Article  CAS  Google Scholar 

  • Liquori ME, Christenson RH, Collinson PO, Defilippi CR. Cardiac biomarkers in heart failure. Clin Biochem. 2014;47(6):327–37.

    Article  CAS  Google Scholar 

  • Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A. 2007;104(52):20844.

    Article  CAS  Google Scholar 

  • Lok DJ, Lok SI, Badings E, Lipsic E, Wijngaarden JV, Boer RAD, Veldhuisen DJV, Meer PVD. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102(2):103–10.

    Article  CAS  Google Scholar 

  • Long B, Liu CY, Liu F, Wang K, Zhou LY, Li PF, Zhou QY, Fan YYCARL. lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5(5):3596.

    PubMed  Google Scholar 

  • Maisel A, Hollander JE, Guss D, Mccullough P, Nowak R, Green G, Saltzberg M, Ellison SR, Bhalla MA, Bhalla V. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol. 2004;44(6):1328–33.

    Article  Google Scholar 

  • Matkovich SJ. Transcriptome analysis in heart failure. Curr Opin Cardiol. 2016;31(3):242.

    Article  Google Scholar 

  • Maznyczka A, Kaier T, Marber M. Troponins and other biomarkers in the early diagnosis of acute myocardial infarction. Postgrad Med J. 2015;91(1076):322–30.

    Article  CAS  Google Scholar 

  • Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106(1):13–23.

    Article  CAS  Google Scholar 

  • Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growthnovelty and significance. Circ Res. 2014;114(9):1389.

    Article  CAS  Google Scholar 

  • Michiels C. Endothelial cell functions. J Cell Physiol. 2003;196(3):430–43.

    Article  CAS  Google Scholar 

  • Minami Y, Satoh M, Maesawa C, Takahashi Y, Tabuchi T, Itoh T, Nakamura M. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Investig. 2009;39(5):359–67.

    Article  CAS  Google Scholar 

  • Miquerol L, Kelly RG. Organogenesis of the vertebrate heart. Wires Dev Biol. 2013;2(1):17–29.

    Article  CAS  Google Scholar 

  • Mueller M, Vafaie M, Biener M, Giannitsis E, Katus HA. Cardiac troponin T: from diagnosis of myocardial infarction to cardiovascular risk prediction. Circ J Off J Jpn Circ Soc. 2013;77(7):1653–61.

    CAS  Google Scholar 

  • Nigam V, Sievers HH, Jensen BC, Sier HA, Simpson PC, Srivastava D, Mohamed SA. Altered micrornas in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis. 2010;19(4):459.

    PubMed  PubMed Central  Google Scholar 

  • O’Brien J Jr, Kibiryeva N, Zhou XG, Marshall JA, Lofland GK, Artman M, Chen J, Bittel DC. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot. Circ Cardiovasc Genet. 2012;5(3):279.

    Article  Google Scholar 

  • Oerlemans MI, Mosterd A, Dekker MS, De Vrey EA, Van MA, Pasterkamp G, Doevendans PA, Hoes AW, Sluijter JP. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med. 2012;4(11):1176–85.

    Article  CAS  Google Scholar 

  • Oeth P, Parry GC, Mackman N. Regulation of the tissue factor gene in human monocytic cells. Role of AP-1, NF-kappa B/Rel, and Sp1 proteins in uninduced and lipopolysaccharide-induced expression. Thromb Haemost. 1997;78(1):747–54.

    Article  Google Scholar 

  • Olivieri F, Antonicelli R, Lorenzi M, D’alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La SL, Galeazzi R. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol. 2013;167(2):531–6.

    Article  Google Scholar 

  • Pei H, Wei L, Lin CH, Jin Y, Shang C, Nuernberg ST, Kai JK, Xu W, Lin CY, Lin CJ. A long non-coding RNA protects the heart from pathological hypertrophy. Nature. 2014;514(7520):102–6.

    Article  Google Scholar 

  • Rana MS, Christoffels VM, Moorman AF. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol. 2013;207(4):588–615.

    Article  CAS  Google Scholar 

  • Ratajczak MZ. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. Folia Histochem Cytobiol. 2012;50(2):171–9.

    Article  CAS  Google Scholar 

  • Rooij EV, Sutherland LB, Thatcher JE, Dimaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027.

    Article  Google Scholar 

  • Rosenberg S, Elashoff MR, Beineke P, Daniels SE, Wingrove JA, Tingley WG, Sager PT, Kraus WE, Newby LK, Schwartz RS. Multi-center validation of the diagnostic accuracy of a blood-based gene expression test for assessment of obstructive coronary artery disease in non-diabetic patients. Ann Intern Med. 2010;153(7):425–34.

    Article  Google Scholar 

  • Santoro MM, Nicoli S. miRNAs in endothelial cell signaling: the endomiRNAs. Exp Cell Res. 2013;319(9):1324–30.

    Article  CAS  Google Scholar 

  • Scheuermann JC, Boyer LA. Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J. 2013;32(13):1805–16.

    Article  CAS  Google Scholar 

  • Smith T, Rajakaruna C, Caputo M, Emanueli C. MicroRNAs in congenital heart disease. Ann Transl Med. 2015;3(21):333.

    PubMed  PubMed Central  Google Scholar 

  • Sondermeijer BM, Bakker A, Halliani A, Ronde MWJD, Marquart AA, Tijsen AJ, Mulders TA, Kok MGM, Battjes S, Maiwald S. Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS One. 2011;6(10):e25946.

    Article  CAS  Google Scholar 

  • Später D, Hansson EM, Zangi L, Chien KR. How to make a cardiomyocyte. Development. 2014;141(23):4418–31.

    Article  Google Scholar 

  • Steenbergen C, Afshari CA, Petranka JG, Collins J, Martin K, Bennett L, Haugen A, Bushel P, Murphy E. Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am J Physiol Heart Circ Physiol. 2003;284(1):H268.

    Article  CAS  Google Scholar 

  • Taurino C, Miller WH, Mcbride MW, Mcclure JD, Khanin R, Moreno MU, Dymott JA, Delles C, Dominiczak AF. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci. 2010;119(8):335.

    Article  CAS  Google Scholar 

  • Uosaki H, Cahan P, Lee D, Wang S, Miyamoto M, Fernandez L, Kass D, Kwon C. Transcriptional landscape of cardiomyocyte maturation. Cell Rep. 2015;13(8):1705–16.

    Article  CAS  Google Scholar 

  • Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132(5):875–86.

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57.

    Article  CAS  Google Scholar 

  • Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659.

    Article  Google Scholar 

  • Wang H, Lin YZ, Lu HM, Zhou Y, Luo C, Lu SH, Zhao L, Liu F. Circulating microRNA-92a in patients with ST-segment elevation myocardial infarction. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue = Chin Crit Care Med = Zhongguo Weizhongbing Jijiuyixue. 2011;23(12):718.

    CAS  Google Scholar 

  • Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One. 2014a;9(9):e105734.

    Article  Google Scholar 

  • Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014b;114(9):1377–88.

    Article  CAS  Google Scholar 

  • Wang W, Niu Z, Wang Y, Li Y, Zou H, Yang L, Meng M, Wei C, Li Q, Duan L. Comparative transcriptome analysis of atrial septal defect identifies dysregulated genes during heart septum morphogenesis. Gene. 2016;575(2):303–12.

    Article  CAS  Google Scholar 

  • Weber M, Baker MB, Patel RS, Quyyumi AA, Bao G, Searles CD. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract. 2011;2011(6):532915.

    PubMed  PubMed Central  Google Scholar 

  • Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013;10(1):15.

    Article  CAS  Google Scholar 

  • Wingrove JA, Daniels SE, Sehnert AJ, Tingley W, Elashoff MR, Rosenberg S, Buellesfeld L, Grube E, Newby LK, Ginsburg GS. Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circ Cardiovasc Genet. 2008;1(1):31.

    Article  CAS  Google Scholar 

  • Yang IS, Kim S. Analysis of whole transcriptome sequencing data: workflow and software. Genomics Inform. 2015;13(4):119.

    Article  Google Scholar 

  • Yao R, Ma Y, Du Y, Liao M, Li H, Liang W, Yuan J, Ma Z, Yu X, Xiao H. The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome. Cell Mol Immunol. 2011;8(6):486.

    Article  CAS  Google Scholar 

  • Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90(1):195–203.

    Article  CAS  Google Scholar 

  • Zhu S, Department C. Identification of maternal serum microRNAs as novel noninvasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013;424:66–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hao, L., Chen, S., Ma, J., Xiao, D., Ma, D. (2018). Cardiac Transcriptome Profile in Heart Diseases. In: Jiang, H., Liu, M. (eds) Heart Genomics. Translational Bioinformatics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-1429-2_2

Download citation

Publish with us

Policies and ethics