Skip to main content

3D Ultrasound for Orthopedic Interventions

  • Chapter
  • First Online:
Intelligent Orthopaedics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1093))

Abstract

Ultrasound is a real-time, non-radiation-based imaging modality with an ability to acquire two-dimensional (2D) and three-dimensional (3D) data. Due to these capabilities, research has been carried out in order to incorporate it as an intraoperative imaging modality for various orthopedic surgery procedures. However, high levels of noise, different imaging artifacts, and bone surfaces appearing blurred with several mm in thickness have prohibited the widespread use of ultrasound as a standard of care imaging modality in orthopedics. In this chapter, we provided a detailed overview of numerous applications of 3D ultrasound in the domain of orthopedic surgery. Specifically, we discuss the advantages and disadvantages of methods proposed for segmentation and enhancement of bone ultrasound data and the successful application of these methods in clinical domain. Finally, a number of challenges are identified which need to be overcome in order for ultrasound to become a preferred imaging modality in orthopedics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amin DV, Kanade T, Digioia AM, Jaramaz B (2003) Ultrasound registration of the bone surface for surgical navigation. Comput Aided Surg 8(1): 1–16

    Article  PubMed  Google Scholar 

  2. Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25(5):606–614

    Article  CAS  PubMed  Google Scholar 

  3. Anas EMA, Seitel A, Rasoulian A, John PS, Pichora D, Darras K, Wilson D, Lessoway VA, Hacihaliloglu I, Mousavi P, Rohling R, Abolmaesumi P (2015) Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures. Int J Comput Assist Radiol Surg 10(6):959–969

    Article  PubMed  Google Scholar 

  4. Anas EMA, Seitel A, Rasoulian A, John PS, Ungi T, Lasso A, Darras K, Wilson D, Lessoway VA, Fichtinger G, Rohling R, Abolmaesumi P (2016) Bone enhancement in ultrasound based on 3D local spectrum variation for percutaneous scaphoid fracture fixation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 465–473

    Google Scholar 

  5. Azhari H (2010) Basics of biomedical ultrasound for engineers. Wiley, Hoboken

    Book  Google Scholar 

  6. Baka N, Leenstra S, van Walsum T (2017) Random forest-based bone segmentation in ultrasound. Ultrasound Med Biol 43(10):2426–2437

    Article  PubMed  Google Scholar 

  7. Baka N, Leenstra S, van Walsum T (2017) Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans Med Imaging 36(10):2138–2147

    Article  PubMed  Google Scholar 

  8. Barratt DC, Penney GP, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans Med Imaging 25(3):312–323

    Article  PubMed  Google Scholar 

  9. Bäthis H, Perlick L, Tingart M, Lüring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. Bone Joint J 86(5):682–687

    Google Scholar 

  10. Beek M, Abolmaesumi P, Luenam S, Ellis RE, Sellens RW, Pichora DR (2008) Validation of a new surgical procedure for percutaneous scaphoid fixation using intra-operative ultrasound. Med Image Anal 12(2):152–162

    Article  CAS  PubMed  Google Scholar 

  11. Beitzel J, Ahmadi SA, Karamalis A, Wein W, Navab N (2012) Ultrasound bone detection using patient-specific ct prior. In: Proceedings of the 2012 annual international conference on the IEEE engineering in medicine and biology society. IEEE, Piscataway, pp 2664–2667

    Chapter  Google Scholar 

  12. Berton F, Cheriet F, Miron MC, Laporte C (2016) Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images. Comput Biol Med 72:201–211

    Article  PubMed  Google Scholar 

  13. Boukerroui D, Noble JA, Brady M (2004) On the choice of band-pass quadrature filters. J Math Imaging Vis 21(1–2):53–80

    Article  Google Scholar 

  14. Brendel B, Winter S, Rick A, Stockheim M, Ermert H (2002) Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput Aided Surg 7(3):146–155

    Article  CAS  PubMed  Google Scholar 

  15. Brudfors M, Seitel A, Rasoulian A, Lasso A, Lessoway VA, Osborn J, Maki A, Rohling RN, Abolmaesumi P (2015) Towards real-time, tracker-less 3D ultrasound guidance for spine anaesthesia. Int J Comput Assist Radiol Surg 10(6):855–865

    Article  PubMed  Google Scholar 

  16. Carrat L, Tonetti J, Merloz P, Troccaza J (2000) Percutaneous computer assisted iliosacral screwing: clinical validation. In: Proceedings of the Medical image computing and computer-assisted intervention–MICCAI 2000. Springer, Berlin/Heidelberg, pp 97–140

    Google Scholar 

  17. Chen TK, Abolmaesumi P, Pichora DR, Ellis RE (2005) A system for ultrasound-guided computer-assisted orthopaedic surgery. Comput Aided Surg 10(5–6):281–292

    Article  PubMed  Google Scholar 

  18. Daanen V, Tonetti J, Troccaz J (2004) A fully automated method for the delineation of osseous interface in ultrasound images. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Berlin/Heidelberg, pp 549–557

    Google Scholar 

  19. Ecker TM, Tannast M, Murphy SB (2007) Computed tomography-based surgical navigation for hip arthroplasty. Clin Orthop Relat Res 465:100–105

    PubMed  Google Scholar 

  20. Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144

    Article  Google Scholar 

  21. Fenster A, Downey DB, Cardinal HN (2001) Three-dimensional ultrasound imaging. Phys Med Biolo 46(5):R67

    Article  CAS  Google Scholar 

  22. Foroughi P, Boctor E, Swartz MJ, Taylor RH, Fichtinger G (2007) P6d-2 ultrasound bone segmentation using dynamic programming. In: Ultrasonics Symposium. IEEE, Piscataway, pp 2523–2526

    Google Scholar 

  23. Foroughi P, Song D, Chintalapani G, Taylor RH, Fichtinger G (2008) Localization of pelvic anatomical coordinate system using us/atlas registration for total hip replacement. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 871–879

    Google Scholar 

  24. Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120

    Google Scholar 

  25. Grau V, Becher H, Noble JA (2007) Registration of multiview real-time 3-D echocardiographic sequences. IEEE Trans Med Imaging 26(9):1154–1165

    Article  PubMed  Google Scholar 

  26. Hacihaliloglu I (2017) Enhancement of bone shadow region using local phase-based ultrasound transmission maps. Int J Comput Assist Radiol Surg 12(6):951–960

    Article  PubMed  Google Scholar 

  27. Hacihaliloglu I (2017) Ultrasound imaging and segmentation of bone surfaces: a review. Technology 50(02):74–80

    Article  Google Scholar 

  28. Hacihaliloglu I (2018) Localization of bone surfaces from ultrasound data using local phase information and signal transmission maps. In: Computational methods and clinical applications in musculoskeletal imaging. Springer, Cham, pp 1–11

    Google Scholar 

  29. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2009) Bone surface localization in ultrasound using image phase based feature. Ultrasound Med Biol 35(9):1475–1487

    Article  PubMed  Google Scholar 

  30. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2011) Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound. Ultrasound Med Biol 37(10):1689–1703

    PubMed  Google Scholar 

  31. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN, Guy P (2012) Automatic bone localization and fracture detection from volumetric ultrasound images using 3-D local phase features. Ultrasound Med Biol 38(1):128–144

    Article  PubMed  Google Scholar 

  32. Hacihaliloglu I, Guy P, Hodgson AJ, Abugharbieh R (2015) Automatic extraction of bone surfaces from 3D ultrasound images in orthopaedic trauma cases. Int J Comput Assist Radiol Surg 10(8):1279–1287

    Article  PubMed  Google Scholar 

  33. Hacihaliloglu I, Rasoulian A, Rohling RN, Abolmaesumi P (2014) Local phase tensor features for 3-D ultrasound to statistical shape+ pose spine model registration. IEEE Trans Med Imaging 33(11):2167–2179

    Article  PubMed  Google Scholar 

  34. Herscovici D Jr, Sanders RW (2000) The effects, risks, and guidelines for radiation use in orthopaedic surgery. Clin Orthop Relat Res 375:126–132

    Article  Google Scholar 

  35. Hodge KK, McNeal JE, Terris MK, Stamey TA (1989) Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 142(1):71–74

    Article  CAS  PubMed  Google Scholar 

  36. Hott JS, Deshmukh VR, Klopfenstein JD, Sonntag VK, Dickman CA, Spetzler RF, Papadopoulos SM (2004) Intraoperative Iso-C C-Arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54(5):1131–1137

    Article  PubMed  Google Scholar 

  37. Hussain MA, Hodgson AJ, Abugharbieh R (2017) Strain-initialized robust bone surface detection in 3-D ultrasound. Ultrasound Med Biol 43(3):648–661

    Article  PubMed  Google Scholar 

  38. Ionescu G, Lavallée S, Demongeot J (1999) Automated registration of ultrasound with CT images: application to computer assisted prostate radiotherapy and orthopedics. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 768–777

    Google Scholar 

  39. Jain AK, Taylor RH (2004) Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. In: Medical imaging 2004: ultrasonic imaging and signal processing, vol 5373. International Society for Optics and Photonics, pp 131–143, 28 Apr 2004

    Google Scholar 

  40. Jia R, Mellon SJ, Hansjee S, Monk A, Murray D, Noble JA (2016) Automatic bone segmentation in ultrasound images using local phase features and dynamic programming. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI). IEEE, Piscataway, pp 1005–1008

    Chapter  Google Scholar 

  41. Joskowicz L, Milgrom C, Simkin A, Tockus L, Yaniv Z (1998) Fracas: a system for computer-aided image-guided long bone fracture surgery. Comput Aided Surg 3(6):271–288

    Article  CAS  PubMed  Google Scholar 

  42. Karamalis A, Wein W, Klein T, Navab N: Ultrasound confidence maps using random walks. Med Image Anal 16(6):1101–1112 (2012)

    Article  PubMed  Google Scholar 

  43. Koivukangas T, Katisko JP, Koivukangas JP (2013) Technical accuracy of optical and the electromagnetic tracking systems. SpringerPlus 2(1):90

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kowal J, Amstutz C, Langlotz F, Talib H, Ballester MG (2007) Automated bone contour detection in ultrasound b-mode images for minimally invasive registration in computer-assisted surgery an in vitro evaluation. Int J Med Rob Comput Assist Surg 3(4):341–348

    Article  Google Scholar 

  45. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519

    Article  PubMed  Google Scholar 

  46. Linsenmaier U, Rock C, Euler E, Wirth S, Brandl R, Kotsianos D, Mutschler W, Pfeifer KJ (2002) Three-dimensional CT with a modified c-arm image intensifier: feasibility 1. Radiology 224(1):286–292

    Article  PubMed  Google Scholar 

  47. Macé E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M (2011) Functional ultrasound imaging of the brain. Nat Methods 8(8):662

    Article  PubMed  Google Scholar 

  48. Masson-Sibut A, Nakib A, Petit E, Leitner F (2011) Computer-assisted intramedullary nailing using real-time bone detection in 2D ultrasound images. In: International workshop on machine learning in medical imaging. Springer, Berlin/Heidelberg, pp 18–25, 18 Sept 2011

    Chapter  Google Scholar 

  49. Mercier L, Langø T, Lindseth F, Collins LD (2005) A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol 31(2):143–165

    Article  PubMed  Google Scholar 

  50. Moiyadi AV, Unsgård G (2016) Navigable ultrasound, 3D ultrasound and fusion imaging in neurosurgery. In: Intraoperative ultrasound (IOUS) in neurosurgery. Springer, Cham, pp 135–145 (2016)

    Chapter  Google Scholar 

  51. Mulet-Parada M, Noble JA (2000) 2d+ t acoustic boundary detection in echocardiography. Med Image Anal 4(1):21–30

    Article  CAS  PubMed  Google Scholar 

  52. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Article  PubMed  Google Scholar 

  53. Nyland TG, Mattoon JS, Herrgesell EJ, Wisner ER (2002) Ultrasound-guided biopsy. Small Anim diagn Ultrasound 2:30–48

    Article  Google Scholar 

  54. Ozdemir F, Ozkan E, Goksel O (2016) Graphical modeling of ultrasound propagation in tissue for automatic bone segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 256–264

    Google Scholar 

  55. Parmar BJ, Yang X, Chaudhry A, Shajudeen PS, Nair SP, Weiner BK, Tasciotti E, Krouskop TA, Righetti R (2015) Ultrasound elastography assessment of bone/soft tissue interface. Phys Med Biol 61(1):131

    Article  PubMed  Google Scholar 

  56. Penney GP, Barratt DC, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Cadaver validation of intensity-based ultrasound to ct registration. Med Image Anal 10(3): 385–395

    Article  CAS  PubMed  Google Scholar 

  57. Peters T, Cleary K (2008) Image-guided interventions: technology and applications. Springer, New York

    Book  Google Scholar 

  58. Quader N, Hodgson A, Abugharbieh R (2014) Confidence weighted local phase features for robust bone surface segmentation in ultrasound. In: Proceedings of the workshop on clinical image-based procedures. Springer, Cham, pp 76–83

    Google Scholar 

  59. Rasoulian A, Abolmaesumi P, Mousavi P (2012) Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med Phys 39(6):3154–3166

    Article  PubMed  Google Scholar 

  60. Rasoulian A, Seitel A, Osborn J, Sojoudi S, Nouranian S, Lessoway, VA, Rohling RN, Abolmaesumi P (2015) Ultrasound-guided spinal injections: a feasibility study of a guidance system. Int J Comput Assist Radiol Surg 10(9):1417–1425

    Article  PubMed  Google Scholar 

  61. Riley GM, McWalter EJ, Stevens KJ, Safran MR, Lattanzi R, Gold GE (2015) MRI of the hip for the evaluation of femoroacetabular impingement; past, present, and future. J Magn Reson Imaging 41(3):558–572

    Article  PubMed  Google Scholar 

  62. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 234–241

    Google Scholar 

  63. Rose JL, Goldberg BB (1979) Basic physics in diagnostic ultrasound. Wiley, New York

    Google Scholar 

  64. Salehi M, Prevost R, Moctezuma JL, Navab N, Wein W (2017) Precise ultrasound bone registration with learning-based segmentation and speed of sound calibration. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 682–690

    Google Scholar 

  65. Sanders R, Fortin P, DiPasquale T, Walling A (1993) Operative treatment in 120 displaced intraarticular calcaneal fractures results using a prognostic computed tomography scan classification. Clin Orthop Relat Res 290:87–95

    Google Scholar 

  66. Schep NWL, Broeders I, van der Werken C (2003) Computer assisted orthopaedic and trauma surgery: state of the art and future perspectives. Injury 34(4):299–306

    Article  CAS  PubMed  Google Scholar 

  67. Schumann S (2016) State of the art of ultrasound-based registration in computer assisted orthopedic interventions. In: Proceedings of the computational radiology for orthopaedic interventions. Springer, Cham, pp 271–297

    Chapter  Google Scholar 

  68. Slomczykowski MA, Hofstetter R, Sati M, Krettek C, Nolte LP (2001) Novel computer-assisted fluoroscopy system for intraoperative guidance: feasibility study for distal locking of femoral nails. J Orthop Trauma 15(2):122–131

    Article  CAS  PubMed  Google Scholar 

  69. Solberg OV, Lindseth F, Torp H, Blake RE, Hernes TAN (2007) Freehand 3D ultrasound reconstruction algorithms a review. Ultrasound Med Biol 33(7):991–1009

    Article  PubMed  Google Scholar 

  70. Stulberg SD, Loan P, Sarin V (2002) Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. JBJS 84(suppl_2):S90–S98

    Article  PubMed  Google Scholar 

  71. Suetens P (2017) Fundamentals of medical imaging. Cambridge University Press, Cambridge

    Book  Google Scholar 

  72. Suri JS (2008) Advances in diagnostic and therapeutic ultrasound imaging. Artech House, Boston/London

    Google Scholar 

  73. Talib H, Peterhans M, Garcia J, Styner M, Ballester MAG (2011) Information filtering for ultrasound-based real-time registration. IEEE Trans Biomed Eng 58(3):531–540

    Article  PubMed  Google Scholar 

  74. Tonetti J, Carrat L, Blendea S, Merloz P, Troccaz J, Lavallée S, Chirossel JP (2001) Clinical results of percutaneous pelvic surgery. Computer assisted surgery using ultrasound compared to standard fluoroscopy. Comput Aided Surg 6(4): 204–211

    Article  CAS  PubMed  Google Scholar 

  75. Turnbull DH, Foster FS (1992) Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 39(4):464–475

    Article  CAS  PubMed  Google Scholar 

  76. Tyryshkin K, Mousavi P, Beek M, Ellis R, Pichora D, Abolmaesumi P (2007) A navigation system for shoulder arthroscopic surgery. Proc Inst Mech Eng Part H J Eng Med 221(7):801–812

    Article  CAS  Google Scholar 

  77. Unsgaard G, Rygh O, Selbekk T, Müller T, Kolstad F, Lindseth F, Hernes TN (2006) Intra-operative 3d ultrasound in neurosurgery. Acta Neurochir 148(3):235–253

    Article  CAS  PubMed  Google Scholar 

  78. Wagner N, Eldar YC, Friedman Z (2012) Compressed beamforming in ultrasound imaging. IEEE Trans Signal Process 60(9):4643–4657

    Article  Google Scholar 

  79. Wein W, Karamalis A, Baumgartner A, Navab N (2015) Automatic bone detection and soft tissue aware ultrasound–ct registration for computer-aided orthopedic surgery. Int J Comput Assist Radiol Surg 10(6):971–979

    Article  PubMed  Google Scholar 

  80. Wen X, Salcudean S (2007) Enhancement of bone surface visualization using ultrasound radio-frequency signals. In: IEEE Ultra. Symp, vol 1051, pp 2535–2538

    Google Scholar 

  81. Wendl K, Von Recum J, Wentzensen A, Grützner P (2003) Iso-C (3D0-assisted) navigated implantation of pedicle screws in thoracic lumbar vertebrae. Unfallchirurg 106(11):907–913

    Article  CAS  PubMed  Google Scholar 

  82. Yaniv Z, Cleary K (2006) Image-guided procedures: A review. Comput Aided Interv Med Robot 3: 1–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilker Hacihaliloglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hacihaliloglu, I. (2018). 3D Ultrasound for Orthopedic Interventions. In: Zheng, G., Tian, W., Zhuang, X. (eds) Intelligent Orthopaedics. Advances in Experimental Medicine and Biology, vol 1093. Springer, Singapore. https://doi.org/10.1007/978-981-13-1396-7_10

Download citation

Publish with us

Policies and ethics