Skip to main content

Plants Response and Tolerance to Arsenic-Induced Oxidative Stress

  • Chapter
  • First Online:

Abstract

Arsenic (As) is a toxic metalloid of global concern derived from natural, geothermal, and anthropogenic sources. Arsenic has deleterious effects in all forms of life including plants. Between the two inorganic forms, the highly oxidized pentavalent arsenate (AsV) is prevalent in the aerobic environment, while the highly reduced trivalent arsenite (AsIII) is the predominant form in an anaerobic environment. The main route of AsV uptake in plants is through the phosphate transporters, while AsIII and methylated As species enter through nodulin 26–like intrinsic protein (NIP) or aquaglyceroporins. After entering into the plant cell As can severely impede plant metabolism which leads to various physiological disorder. Subsequently, growth of the plants is subdued, and it results in delaying or restraining accrual of biomass and induces loss of fertility, yield, and fruit production. Exposure to inorganic As in plants promotes oxidative stress by generating reactive oxygen species (ROS) during their conversion from AsV to AsIII. Plants have a well-organized antioxidant defense system to combat As stress. In plants, As intoxication triggers the activation of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX); synthesis of nonenzymatic antioxidants, such as ascorbate and γ-Glu-Cys-Gly-tripeptide glutathione (GSH); and accumulation of anthocyanin in the leaves. As tolerance in plants is achieved by the production of phytochelatin following As exposure which is derived from GSH. This chapter aims to provide current updates about the molecular mechanism involved in uptake of the inorganic and organic species of As, their translocation, and the As-induced stress in plants with a special emphasis on oxidative stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289

    Article  CAS  Google Scholar 

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87. https://doi.org/10.1186/1471-2229-8-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adriano DC (1986) Trace element in terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    Article  CAS  PubMed  Google Scholar 

  • Airaki M, Leterrier M, Valderrama R, Chaki M, Begara-Morales JC, Barroso JB, del Río LA, Palma JM, Corpas FJ (2015) Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings. Ann Bot 116:679–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Umar S, Chan MT (2010) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht

    Book  Google Scholar 

  • Anjum NA, Umar S, Ahmad A (2011a) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishing House Pvt. Ltd, New Delhi

    Google Scholar 

  • Anjum NA, Umar S, Iqbal M, Khan NA (2011b) Cadmium causes oxidative stress in moongbean [Vigna radiata (L.) Wilczek] by affecting antioxidant enzyme systems and ascorbate-glutathione cycle metabolism. Russ J Plant Physiol 58:92–99

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MN (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A (2016) Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23:19002–19029

    Article  CAS  Google Scholar 

  • Battistuzzi G, D’Onofrio M, Loschi L, Sola M (2001) Isolation and characterization of two peroxidases from Cucumis sativus. Arch Biochem Biophys 388:100–112

    Article  CAS  PubMed  Google Scholar 

  • Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Schuessler MD, Jahn TP (2008) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33:20–26

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834

    Article  CAS  PubMed  Google Scholar 

  • Bricker TJ, Pichtel J, Brown HJ, Simmons M (2001) Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. J Environ Sci Health 36:1597–1610

    Article  CAS  Google Scholar 

  • Bunkelmann JR, Trelease RN (1996) Ascorbate peroxidase, a prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burlo F, Guijarro I, Carbonell-Barrachina AA, Valero D, Martinez-Sánchez F (1999) Arsenic species: effects on and accumulation by tomato plants. J Agric Food Chem 7:1247–1253

    Article  Google Scholar 

  • Cao X, Ma LQ, Tu C (2004) Antioxidant responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Barrachina AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  CAS  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Grain unloading of arsenic species in rice (Oryza sativa L.). Plant Physiol 152:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y, Price AH, Meharg AA (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate trans-porter PHT1;1displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Gen Mol Biol 35:1011–1019

    Article  CAS  Google Scholar 

  • Cesaro P, Cattaneo C, Bona E, Berta G, Cavaletto M (2015) The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci Rep 5:14525. https://doi.org/10.1038/srep14525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Ślesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpińska B, Karpiński S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Moogoui R, Gupta DK (2017a) Arsenic: source, occurrence, cycle and detection. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment. Springer, New York, pp 13–35

    Chapter  Google Scholar 

  • Chatterjee S, Sharma S, Gupta DK (2017b) Arsenic and its effect on major crop plants: stationary awareness to paradigm with special reference to rice crop. In: Gupta DK, Chatterjee S, (eds) Arsenic contamination in the environment. Springer New York, pp 123–143

    Chapter  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) APX in tea leaves, occurrence of two isoenzymes, the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Article  CAS  Google Scholar 

  • Choudhury B, Mitra S, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate. Physiol Mol Biol Plants 16:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JY, Yu SD, Hong YS (2014) Environmental source of arsenic exposure. J Pre Med Pub Health 47:253–257

    Article  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Dave R, Singh PK, Tripathi P, Shri M, Dixit G, Dwivedi S, Chakrabarty D, Trivedi PK, Sharma YK, Dhankher OP, Corpas FJ (2013a) Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). Arch Environ Contam Toxicol 64:235–242

    Article  CAS  PubMed  Google Scholar 

  • Dave R, Tripathi RD, Dwivedi S, Tripathi P, Dixit G, Sharma YK, Trivedi PK, Corpas FJ, Barroso JB, Chakrabarty D (2013b) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater 262:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140. https://doi.org/10.1038/nbt747

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. Springer, Berlin, pp 73–97

    Chapter  Google Scholar 

  • Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666

    Article  CAS  PubMed  Google Scholar 

  • Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As (III) and As (V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993

    Article  CAS  PubMed  Google Scholar 

  • Duquesnoy I, Goupil P, Nadaud I, Branlard G, Piquet-Pissaloux A, Ledoigt G (2009) Identification of Agrostis tenuis leaf proteins in response to As (V) and As (III) induced stress using a proteomics approach. Plant Sci 176:206–213

    Article  CAS  Google Scholar 

  • Duquesnoy I, Champeau GM, Evray G, Ledoigt G, Piquet-Pissaloux A (2010) Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays. Com Ren Biol 333:814–824

    Article  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Tripathi P, Kumar A, Dave R, Mishra S, Singh R, Sharma D, Rai UN, Chakrabarty D, Trivedi PK (2010) Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ Sci Tech 44:9542–9549

    Article  CAS  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban E, Carpena RO, Meharg AA (2003) High-affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively in sensitive to phosphate status. New Phytol 158:165–173

    Article  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182. https://doi.org/10.3389/fphys.2012.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. The Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  PubMed  Google Scholar 

  • Ghelfi A, Gaziola SA, Cia MC, Chabregas SM, Falco MC, Kuser-Falcão PR, Azevedo RA (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Grill E, Mishra S, Srivastava S, Tripathi RD (2006) Role of phytochelatins in phytoremediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 101–146

    Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Chatterjee S (2017) Arsenic contamination in the environment: the issues and solutions. Springer, New York

    Book  Google Scholar 

  • Gupta DK, Srivastava S, Huang H, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals (Book series: Soil biology). Springer, Berlin, pp 169–180

    Chapter  Google Scholar 

  • Gupta DK, Inouhe M, Rodríguez-Serrano M, Romero-Puerta MC, Sandalio LM (2013a) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–1996

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Huang HG, Nicoloso FT, Schetinger MR, Farias JG, Li TQ, Razafindrabe BH, Aryal N, Inouhe M (2013b) Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 22:1403–1412

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013c) Role of phytochelatin in heavy metal stress and detoxification mechanisms in plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, pp 73–94

    Chapter  Google Scholar 

  • Gupta DK, Tiwari S, Razafindrabe BHN, Chatterjee S (2017) Arsenic contamination from historical aspects till present situation. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solutions. Springer, New York, pp 1–12

    Chapter  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. The Plant Cell 11:1153–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg A (2001) Copper and- arsenic induced oxidative stress in Holcus lanatus L. Cloned with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011a) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxifi cation system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011b) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxifi cation system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353. https://doi.org/10.1007/s11816-011-0189-9

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–317

    Chapter  Google Scholar 

  • Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. The FEBS J 273:5589–5597

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol Environ Safe 114:126–133

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219

    Article  CAS  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Safe 72:626–634

    Article  CAS  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  CAS  Google Scholar 

  • Lafuente A, Pajuelo E, Caviedes MA, Rodríguez-Llorente ID (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 167:286–291

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Tie B, Zeng M, Qing P, Song Z, Williams PN, Huang Y (2013) An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice. Environ Geochem Health 35:379–390

    Article  CAS  PubMed  Google Scholar 

  • Lemos Batista B, Nigar M, Mestrot A, Alves Rocha B, Barbosa Junior F, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479

    Article  PubMed Central  CAS  Google Scholar 

  • Li WX, Chen TB, Huang ZC, Lei M, Liao XY (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, Mc Grath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Han X, Song X, Zhang Y, Jiang J, Han Q, Liu M, Qiao G, Zhuo R (2017) Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis. Front Plant Sci 8:1010. https://doi.org/10.3389/fpls.2017.01010

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Huertas E, del Rio LA (2014) Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L) fruits. J Plant Physiol 171:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Pro Nat Acad Sci USA 105:9931–9935

    Article  CAS  Google Scholar 

  • Madhusudhan R, Ishikawa T, Sawa Y, Shigeoka S, Shibata H (2003) Characterization of an ascorbate peroxidase in plastids of tobacco BY–2 cells. Physiol Plant 117:550–557

    Article  CAS  PubMed  Google Scholar 

  • Mallick S, Sinam G, Sinha S (2011) Study on arsenate tolerant and sensitive cultivars of Zea mays L. Differential detoxification mechanism and effect on nutrients status. Ecotoxicol Environ Saf 74:1316–1324

    Article  CAS  PubMed  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253

    Article  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. l. Annu Rev Plant Biol 47:127–158

    Article  CAS  Google Scholar 

  • Mascher R, Lippman B, Holiinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere – a review. Sci Total Environ 249:297–312

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high-affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17

    Article  CAS  Google Scholar 

  • Meharg AA, Naylor J, Macnair MR (1994) Phosphorus nutrition of arsenate tolerant and nontolerant phenotypes of velvetgrass. J Environ Qual 23:234–238

    Article  CAS  Google Scholar 

  • Mehlhorn H (1990) Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat. Plant Cell Environ 13:971–976

    Article  CAS  Google Scholar 

  • Mendoza-Cózat DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  CAS  Google Scholar 

  • Mihucz VG, Tatar E, Virag I, Cseh E, Fodor F, Zaray G (2005) Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Anal Bio Chem 383:461–466

    Article  CAS  Google Scholar 

  • Milla MA, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant J 36:602–615

    Article  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Dubey RS (2013) Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings. Biometals 26:97–111

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Wellenreuther G, Mattusch J, Stark HJ, Kupper H (2008) Speciation and Distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163:1396–1408

    Article  CAS  Google Scholar 

  • Miteva E, Peycheva S (1999) Arsenic accumulation and effect on peroxidase activity in green bean and tomatoes. Bulg J Agric Sci 5:737–740

    Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mitra A, Chatterjee S (2016) Environmental amelioration using aquatic macrophytes: emphasizing removal of heavy metals from waste water. South Asian J Exp Biol 5:244–250

    Google Scholar 

  • Mitra A, Chatterjee S, Datta S, Sharma S, Veer V, Razafindrabe BHM, Walther C, Gupta DK (2014) Mechanism of metal transporter in plants. In: Gupta DK, Chatterjee S (eds) Heavy metal remediation transport and accumulation in plants. Nova Science Publishers, New York, pp 1–27

    Google Scholar 

  • Mitra A, Chatterjee S, Gupta DK (2017a) Uptake, transport, and remediation of arsenic by Algae and higher plants. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solution. Springer, New York, pp 145–169

    Chapter  Google Scholar 

  • Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017b) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:67. https://doi.org/10.3390/agronomy7040067

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Asada K (1996) Inactivation of mechanism of ascorbate peroxidase at low concentrations of ascorbate, hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430

    Article  CAS  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizon E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2009) Arsenic tolerance in mesquite (Prosopis sp.): low molecular weight thiols synthesis and glutathione activity in response to arsenic. Plant Physiol Biochem 47:822–826

    Article  CAS  PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Montes-Bayon M, Meija J, LeDuc DL, Terry N, Caruso JA, Sanz-Medel A (2004) HPLC–ICP-MS and ESI-Q-TOF analysis of biomolecules induced in Brassica juncea during arsenic accumulation. J Anal At Spectrom 19:153–158

    Article  CAS  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Bertomeu J, Cascales-Minana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585

    Article  CAS  PubMed  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. In: The Arabidopsis Book. The American Society of Plant Biologists, Rockville

    Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa KI, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environ Poll 154:203–211

    Article  CAS  Google Scholar 

  • Panda SK, Upadhyay RK, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196:161–174

    Article  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Pavlík M, Pavlíkova D, Staszkova L, Neuberg M, Kaliszova R, Szákova J, Tlustos P (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014

    Article  CAS  PubMed  Google Scholar 

  • Poynton CY, Huang JWW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088

    Article  CAS  PubMed  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    Article  CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2004) Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiol Plant 120:280–286

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Schat H, Feldmann J, Meharg AA (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Miah MM, Tasmin A (2008) Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol Environ Saf 69:317–324

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Ma LQ, Srivastava M (2006) Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites. In: da Silva JAT (ed) Floriculture, ornamental and plant biotechnology, vol III. Global Science Books, Middlesex, pp 304–311

    Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and nonhyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz H, Härtling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins—comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    Article  CAS  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2004) APX from rice seedlings, properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Shugaev AG, Lashtabega DA, Shugaeva NA, Vyskrebentseva EI (2011) Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots. Russ J Plant Physiol 58:387–393

    Article  CAS  Google Scholar 

  • Simola LK (1997) The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Can J Bot 90:375–405

    Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohali RK, Arora K (2007) Arsenic induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front. Plant Sci 6:340. https://doi.org/10.3389/fpls.2015.00340

    Article  Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Nat Acad Sci 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J Plant Phsiol 161:665–674

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra S, Trtpathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  CAS  PubMed  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Stoeva N, Berova M, Vassilev A, Zlatev Z (2005) Effect of exogenous polyamine diethylenetriamine on oxidative changes and photosynthesis in As-treated maize plants (Zea mays L). J Cent Eur Agric 6:367–374

    Google Scholar 

  • Su YH, McGrath SP, Zhu YG, Zhao FJ (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9:e84426. https://doi.org/10.1371/journal.pone.0084426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung DY, Kim TH, Komives EA, Mendoza-Cozatl DG, Schroeder JI (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. The Plant J 59:802–813

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D (2011) Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L. during germination and early seedling growth. Curr Res J Biol Sci 3:116–123

    CAS  Google Scholar 

  • Talukdar D (2013a) Arsenic-induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660

    Article  CAS  Google Scholar 

  • Talukdar D (2013b) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79

    Article  CAS  PubMed  Google Scholar 

  • Titah HS, Abdullah SR, Mushrifah I, Anuar N, Basri H, Mukhlisin M (2013) Effect of applying rhizobacteria and fertilizer on the growth of Ludwigia octovalvis for arsenic uptake and accumulation in phytoremediation. Ecol Engin 58:303–313

    Article  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Matthuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275. https://doi.org/10.3389/fphys.2012.00275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyper accumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251

    Article  CAS  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Upadhyay RK (2014) Metal stress in plants: its detoxification in natural environment. Brazil J Bot 37:377–382

    Article  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin Synthase, a dipeptidyltransferase that undergoes multisite acylation with γ- glutamylcysteine during catalysis: stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana pcs1-catalyzed phytochelatin synthesis. J Biol Chem 279:22449–22460

    Article  CAS  PubMed  Google Scholar 

  • Vaughan GT (1993) The environmental chemistry and fate of arsenical pesticides in cattle tick dip sites and banana land plantations. CSIRO Division of Coal Industry. Center for Advanced Analytical Chemistry, Melbourne

    Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ (2000) The root meristemless1/cadmium sensitive 2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta Biomembr 1758:1165–1175

    Article  CAS  Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. SA J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadav P, Yadav T, Kumar S, Rani B, Kumar S, Jain V, Malhotra SP (2014) Partial purification and characterization of ascorbate peroxidase from ripening ber (Ziziphus mauritiana L.) fruits. Afr J Biotechnol 13:3323–3331

    Article  CAS  Google Scholar 

  • Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Zaman K, Pardini RS (1996) An overview of the relationship between oxidative stress and mercury and arsenic. Toxic Subst Mech 15:151–181

    Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annul Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, A., Chatterjee, S., Gupta, D.K. (2018). Plants Response and Tolerance to Arsenic-Induced Oxidative Stress. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_5

Download citation

Publish with us

Policies and ethics