Skip to main content

Plant Responses to Arsenic Toxicity: Morphology and Physiology

  • Chapter
  • First Online:

Abstract

Arsenic (As) is a naturally occurring toxic metalloid, ubiquitously present in the environment. It enters the environment from both geogenic and anthropogenic sources. Arsenic accumulates to different edible tissues and thereby enters into food chain. Arsenate and arsenite are two main phyto-available forms of As and are popularly reported to cause toxicity symptoms. Roots are foremost sites of As exposure, which slows down/inhibits extension and proliferation of it. From the roots, As gets translocated to the shoot and inhibits plant growth by slowing/arresting cell division/expansion, biomass accumulation, and plant reproductive capacity. Arsenite is more toxic than that of arsenate, since it has relatively high affinity for sulfhydryl groups of proteins and enzymes thereby alters or inhibits their activities. It interferes with the respiration process by binding to thiol groups of some important respiratory enzymes. Morphological and physiological effects of As include reduced germination and growth, root cell plasmolysis, denodulation and discoloration, leaf wilting, necrosis of leaf tips and margins, reduction in number of leaves and leaf area, distortion of chloroplasts membranes, inhibition in the photosynthetic activity, suppression of starch hydrolyzing enzymes, etc. It is well reported that arsenate replaces phosphate of ATP molecule and hence disrupts cellular energy flow. Arsenic disturbs the uptake of water and nutrients through competition for transporters. Cellular membranes are prime targets of As-induced oxidative stress, as it causes disorganization of membrane structures thereby lipid peroxidation and electrolyte leakage. Membrane damage leads to imbalance in the nutrient uptake and disruption in the stomatal conductance and transpiration process. So, plants have evolved defensive mechanisms in order to protect cells from As-induced oxidative stress through enzymatic and nonenzymatic antioxidants. Binding of As to thiol groups of antioxidant enzymes leads to suppression of defensive system of the plants. Hence, it is necessary to alleviate As from the contaminated areas where crops, vegetables, fruits, and pasturages have been cultivated, to protect the health of animals and human beings. Therefore, there is an urgent need to understand the assimilation, metabolism, and toxic effects of As in plants to develop various mitigation strategies against this dreadful contaminant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to arsenate As(V) stress. BMC Plant Biol 8:87–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agnihotri A, Seth CS (2016) Exogenously applied nitrate improves the photosynthetic performance and nitrogen metabolism in tomato (Solanum lycopersicum L. cv Pusa Rohini) under arsenic (V) toxicity. Physiol Mol Biol Plants 22:341–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH (2010) Analysis of arsenic stress induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    CAS  PubMed  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA, Wang L, Mahmood A, Samad RA, Tung SA (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Villasuso AL, Travaglia C, Racagni GE, Reinoso H, Agostini E (2016) Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean. Plant Physiol Biochem 103:45–52

    Article  CAS  PubMed  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    Article  CAS  Google Scholar 

  • Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    Article  CAS  PubMed  Google Scholar 

  • Bertagnolli BL, Hanson JB (1973) Functioning of the adenine nucleotide transporter in the arsenate uncoupling of corn mitochondria. Plant Physiol 52:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, Sarkar ND, Banerjee P, Banerjee S, Mukherjee S, Chattopadhyay D, Mukhopadhyay A (2012) Effects of As toxicity on germination, seedling growth and peroxidise activity in Cicer arietinum. Int J Agric Food Sci 2:131–137

    Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2016a) Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nut 16:662–676

    CAS  Google Scholar 

  • Chandrakar V, Naithani SC, Keshavkant S (2016b) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377

    Article  CAS  Google Scholar 

  • Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017a) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86

    Article  CAS  PubMed  Google Scholar 

  • Chandrakar V, Parkhey S, Dubey A, Keshavkant S (2017b) Modulation in arsenic-induced lipid catabolism in Glycine max L. using proline, 24-epibrassinolide and diphenylene iodonium. Biologia 72:292–299

    Article  CAS  Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2018) Modulation of arsenic-induced oxidative stress and protein metabolism by diphenyleneiodonium, 24-epibrassinolide and proline in Glycine max L. Acta Bot Croat 77(1):51–61

    Article  Google Scholar 

  • Chandrashekhar AK, Chandrasekharam D, Farooq SH (2016) Contamination and mobilization of arsenic in the soil and groundwater and its influence on the irrigated crops, Manipur Valley, India. Environ Earth Sci 142:1–15

    Google Scholar 

  • Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE (2014) Genome-wide Association Mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009. https://doi.org/10.1371/journal.pbio.1002009

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Lena QM (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268. https://doi.org/10.3389/fpls.2017.00268

    Article  PubMed  PubMed Central  Google Scholar 

  • Chidambaram AA, Sundaramoorthy P, Murugan A, Ganesh KS, Baskaran L (2009) Chromium induced cytotoxicity in black gran (Vigna radiata L.). Iran J Health Sci Eng 6:7–22

    Google Scholar 

  • Dwivedi S, Tripathi RD, Tripathi P, Kumar A, Dave R, Mishra S, Singh R, Sharma D, Rai UN, Chakrabarty D, Trivedi PK, Adhikari B, Bag MK, Dhankher OP, Tuli R (2010) Arsenate exposure affects amino acids, mineral nutrient status and antioxidant in rice (Oryza sativa L.) genotypes. Environ Sci Technol 44:9542–9549

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Oliveira JA, Gusman GS, Leao GA, Silveira NM, Silva PM, Ribeiro C, Cambraia J (2014) Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. Int J Phytoremediation 16:123–137

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Oliveira JA, Paiva EAS, Menezes-Silva PE, da Silva AA, Campos FV, Ribeiro C (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516. https://doi.org/10.3389/fpls.2017.00516

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, Zhou W (2015) Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Environ Sci Pollut Res 22:10699–10712

    Article  CAS  Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KHM, Zhou W (2016a) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, Zhou W (2016b) Subcellular distribution, modulation of antioxidant and stress related genes response to arsenic in Brassica napus L. Ecotoxicology 25:350–366

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Islam F, Yang C, Nawaz A, Athar H, Gill RA, Ali B, Song W, Zhou W (2017) Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots. Plant Growth Regul 84:135–148

    Article  CAS  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants, physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genom 12:635–647

    Article  CAS  Google Scholar 

  • Geng CN, Zhu YG, Hu Y, Williams P, Meharg AA (2006) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306

    Article  CAS  Google Scholar 

  • Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gomes MP, Carneiro MMLC, Nogueira COG, Soares AM, Garcia QS (2013) The system modulating ROS content in germinating seeds of two Brazilian savanna tree species exposed to As and Zn. Acta Physiol Plant 35:1011–1022

    Article  CAS  Google Scholar 

  • Gupta P, Bhatnagar AK (2015) Spatial distribution of arsenic in different leaf tissues and its effect on structure and development of stomata and trichomes in mung bean, Vigna radiata (L.) Wilczek. Environ Exp Bot 109:12–22

    Article  CAS  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013a) Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol Plant 35:1201–1209

    Article  CAS  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013b) Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol Biochem 71:307–314

    Article  CAS  PubMed  Google Scholar 

  • Ismail GSM (2012) Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34:1303–1311

    Article  CAS  Google Scholar 

  • Kaim AS, Kaur I, Bhatnagar AK (2016) Impact of 24-Epibrassinolide on tolerance, accumulation, growth, photosynthesis, and biochemical parameters in arsenic stressed Cicer arietinum L. Agric Sci Res J 6:201–212

    Google Scholar 

  • Karam EA, Keramat B, Asrar Z, Mozafari H (2016) Triacontanol-induced changes in growth, oxidative defense system in Coriander (Coriandrum sativum) under arsenic toxicity. Ind J Plant Physiol 21:137–142

    Article  CAS  Google Scholar 

  • Kaur S, Singh HP, Batish DR, Negi A, Mahajan P, Rana S, Kohli RK (2012) As inhibits radicle emergence and elongation in Phaseolus aureus by altering starch-metabolizing enzymes vis-à-vis disruption of oxidative metabolism. Biol Trace Elem Res 146:360–368

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Dikilitas M (2013) Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turk J Agric For 37:188–194

    CAS  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hort 126:402–407

    Article  CAS  Google Scholar 

  • Kumar A, Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology 23:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Singh VP, Tripathi DK, Prasad SM, Chauhan DK (2015) Effect of arsenic on growth, arsenic uptake, distribution of nutrient elements and thiols in seedlings of Wrightia arborea (Dennst.) Mabb. Int J Phytoremediation 17:128–134

    Article  CAS  PubMed  Google Scholar 

  • Lang I, Sassmann S, Schmidt B, Komis G (2014) Plasmolysis: loss of turgor and beyond. Plants 3:583–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazzarato L, Trebbi G, Pagnucco C, Franchin C, Torrigiani P, Betti L (2009) Exogenous spermidine, arsenic and β-aminobutyric acid modulate tobacco resistance to tobacco mosaic virus, and affect local and systemic glucosylsalicylic acid levels and arginine decarboxylase gene expression in tobacco leaves. J Plant Physiol 166:90–100

    Article  CAS  PubMed  Google Scholar 

  • Li WX, Chen TB, Huang ZC, Lei M, Liao XY (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809

    Article  CAS  PubMed  Google Scholar 

  • Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Hu C, Tan Q, Sun X, Su J, Liang Y (2008) Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. J Environ Sci 20:326–331

    Article  CAS  Google Scholar 

  • Lou LQ, Shi GL, Wu JH, Zhu S, Qian M, Wang HZ, Cai QS (2015) The influence of phosphorus on arsenic uptake/efflux and As toxicity to wheat roots in comparison with sulfur and silicon. J Plant Growth Regul 34:242–250

    Article  CAS  Google Scholar 

  • Mahdieh S, Ghaderian SM, Karimi N (2013) Effect of arsenic on germination, photosynthesis and growth parameters of two winter wheat varieties in Iran. J Plant Nutr 6:651–664

    Article  CAS  Google Scholar 

  • Mallick S, Sinam G, Sinha S (2011) Study on arsenate tolerant and sensitive cultivars of Zea mays L.: differential detoxification mechanism and effect on nutrient status. Ecotoxicol Environ Saf 74:1316–1324

    Article  CAS  PubMed  Google Scholar 

  • Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • Meadows R (2014) How plants control arsenic accumulation. PLoS Biol 12:e1002008. https://doi.org/10.1371/journal.pbio.1002008

    Article  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Milivojevic DB, Nikolic BR, Drinic G (2006) Effect of arsenic on phosphorus content in different organs and chlorophyll fluorescence in primary leaves of soybean. Biol Plant 50:149–151

    Article  CAS  Google Scholar 

  • Mirza N, Mahmood Q, Shah MM, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic arsenic content. Sci World J 2014:1. https://doi.org/10.1155/2014/921581

    Article  CAS  Google Scholar 

  • Miteva E, Merakchiyska M (2002) Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in soil. Bulg J Agric Sci 8:151–156

    Google Scholar 

  • Moore SA, Moennich DM, Gresser MJ (1983) Synthesis and hydrolysis of ADP-arsenate by beef heart sub mitochondrial particles. J Biol Chem 258:6266–6271

    CAS  PubMed  Google Scholar 

  • Most P, Papenbrock J (2015) Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate. Molecules 20:1410–1423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mumthas S, Chidambaram AA, Sundaramoorthy P, Ganesh KS (2010) Effect of arsenic and manganese on root growth and cell division in root tip cells of green gram (Vigna radiata L.). Emir J Food Agric 22:285–297

    Article  Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interaction in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paivoke AEA, Simola LK (2001) Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicol Environ Saf 49:111–121

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, Upadhyay RK, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196:161–174

    Article  CAS  Google Scholar 

  • Pandey C, Augustine R, Panthri M, Zia I, Bisht NC, Gupta M (2017) Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: a comparison of two Brassica cultivars. Plant Physiol Biochem 111:144–154

    Article  CAS  PubMed  Google Scholar 

  • Pathare V, Srivastava S, Sonawane BV, Suprasanna P (2016) Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiol Mol Biol Plants 22:515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra M, Bhoumik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Pirselova B, Mistríková V, Libantová J, Moravčíková J, Matušíková I (2012) Study on metal-triggered callose deposition in roots of maize and soybean. Biologia 67:698–705

    Google Scholar 

  • Radabaugh TR, Sampayo-Reyes A, Zakharyan RA, Aposhian HV (2002) Arsenate reductase II Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems. Chem Res Toxicol 15:692–698

    Article  CAS  PubMed  Google Scholar 

  • Rahman F, Naidu E (2009) The influence of arsenic speciation (AsIII & AsV) and concentration on the growth, uptake and translocation of arsenic in vegetable crops (silverbeet and amaranth): greenhouse study. Environ Geochem Health 31:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2015) Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Res 2015:340812. https://doi.org/10.1155/2015/340812

    Article  CAS  Google Scholar 

  • Rai A, Bhardwaj A, Misra P, Bag SK, Adhikari B, Tripathi RD, Trivedi PK, Chakrabarty D (2015) Comparative transcriptional profiling of contrasting rice genotypes shows expression differences during arsenic stress. Plant Genome 8:1–14

    Article  CAS  Google Scholar 

  • Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2:87–104

    Article  CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Castor JM, Guzman-Mar JL, Hernandez-Ramirez A, Garza-Gonzalez MT, Hinojosa-Reyes L (2014) Arsenic accumulation in maize crop (Zea mays): a review. Sci Total Environ 488:176–187

    Article  PubMed  CAS  Google Scholar 

  • Roychowdhury T, Tokunaga H, Uchino T, Ando M (2005) Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere 58:799–810

    Article  CAS  PubMed  Google Scholar 

  • Rucinska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38:257–269

    Article  CAS  Google Scholar 

  • Sanchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernandez S, Martinez-Herrera DJ (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617. https://doi.org/10.1038/ncomms5617

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Labory CR, Rangel WM, Alves E, Guilherme LR (2013) Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil. J Hazard Mater 262:1245–1258

    Article  CAS  PubMed  Google Scholar 

  • Shaibur MR, Kawai S (2011) Arsenic toxicity in Akitakomachi rice in presence of Fe3+-citrate. Adv Environ Biol 5:1411–1422

    Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    Article  CAS  Google Scholar 

  • Shin H, Shin H-S, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui F, Tandon PK, Srivastava S (2015a) Analysis of arsenic induced physiological and biochemical responses in a medicinal plant, Withania somnifera. Physiol Mol Biol Plants 21:61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui F, Tandon PK, Srivastava S (2015b) Arsenite and arsenate impact the oxidative status and antioxidant responses in Ocimum tenuiflorum L. Physiol Mol Biol Plants 21:453–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Signorelli S, Imparatta C, Rodríguez-Ruiz M, Borsani O, Corpas FJ, Monza J (2016) In vivo and in vitro approaches demonstrate proline is not directly involved in the protection against superoxide, nitric oxide, nitrogen dioxide and peroxynitrite. Funct Plant Biol 43:870–879

    Google Scholar 

  • Singh HP, Batish DR, Kohli RK, Arora K (2007) As induced root growth inhibition in mung bean is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D (2017a) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7:3592–3605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Misgra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP, Norton GJ, Chakrabarty D, Tripathi RD (2017b) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Sharma YK (2013) Impact of arsenic toxicity on black gram and its amelioration using phosphate. ISRN Toxicol doi:org/https://doi.org/10.1155/2013/340925

  • Srivastava S, Srivastava AK, Singh B, Suprasanna P, D’souza SF (2013a) The effect of As on pigment composition and photosynthesis in Hydrilla verticillata. Biol Plant 57:385–389

    Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013b) Quantitative real-time expression profiling of aquaporins-isoforms and growth response of Brassica juncea under arsenite stress. Mol Biol Rep 40:2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2003) Physiological response of maize to arsenic contamination. Biol Plant 47:449–452

    Article  CAS  Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296

    Article  CAS  Google Scholar 

  • Sudhani HPK, García-murria MJ, Moreno J (2013) Reversible inhibition of CO2 fixation by ribulose 1,5-bisphosphate carboxylase/oxygenase through the synergic effect of arsenite and a monothiol. Plant Cell Environ 36:1160–1170

    Article  CAS  Google Scholar 

  • Talukdar D (2013) Arsenic induced changes in growth and antioxidant metabolism of Fenugreek. Russ J Plant Physiol 60:652–660

    Article  CAS  Google Scholar 

  • Talukdar D (2014) Arsenic-induced oxidative stress and its reversal by thiourea in mung bean (Vigna radiata L. Wilczek.) genotype. Cent Eur J Exp Biol 3:13–18

    Google Scholar 

  • Tawfik DS, Viola RE (2011) Arsenate replacing phosphate: alternative life chemistries and ion promiscuity. Biochemistry 50:1128–1134

    Article  CAS  PubMed  Google Scholar 

  • Umar S, Gauba N, Anjum NA, Siddiqi TO (2013) Arsenic toxicity in garden cress (Lepidium sativum Linn.): significance of potassium nutrition. Environ Sci Pollut Res 20:6039–6049

    Article  CAS  Google Scholar 

  • Upadhyaya H, Shome S, Roy D, Bhattacharya MK (2014) Arsenic induced changes in growth and physiological responses in Vigna radiata seedling: effect of curcumin interaction. Am J Plant Sci 5:3609–3618

    Article  CAS  Google Scholar 

  • Wang S, Blumwald E (2014) Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles. Plant Cell 26:4875–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng XY, Xu HX, Yang Y, Peng HH (2008) Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. Biol Plant 52:307–313

    Article  CAS  Google Scholar 

  • Xalxo R, Yadu B, Chakraborty P, Chandrakar V, Keshavkant S (2017) Modulation of nickel toxicity by glycinebetaine and aspirin in Pennisetum typhoideum. Acta Biol Szeg 61:163–171

    Google Scholar 

  • Yadu B, Chandrakar V, Keshavkant S (2016) Responses of plants towards fluoride: an overview of oxidative stress and defense mechanisms. Fluoride 49:293–302

    CAS  Google Scholar 

  • Yadu B, Chandrakar V, Keshavkant S (2017a) Glycinebetaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L. South Afr J Bot 111:68–75

    Article  CAS  Google Scholar 

  • Yadu S, Dewangan TL, Chandrakar V, Keshavkant S (2017b) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plants 23:43–58

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Zhu S, Li S, Shu S, Sun J, Guo S (2014) 24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3)2 stress. Acta Physiol Plant 36:2845–2852

    Article  CAS  Google Scholar 

  • Zavaleta-Mancera HA, Ortega-Ramírez LG, Jiménez-García LF, Sánchez-Viveros G, Alarcón A (2016) Effect of arsenic on chloroplast ultrastructure in Azolla filliculoides Lam. Microsc Microanal 22:1206–1207

    Article  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Geng C, Tong Y, Smith SE, Smith FA (2006) Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines. Ann Bot 98:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Science and Technology, New Delhi, and Scientific and Engineering Research Board, New Delhi, for awarding INSPIRE fellowship [DST/INSPIRE Fellowship/2013/791, dated 17.01.2014] to Vibhuti Chandrakar and National Post Doctoral Fellowship to Neha Pandey [PDF/2016/002813, dated 16.08.2017], respectively. Authors are also grateful to Department of Science and Technology, New Delhi, and Chhattisgarh Council of Science and Technology, Raipur, for financial support through DST-FIST Scheme [2384/IFD/2014-15, dated 31.07.2014], National Center for Natural Resources [IR/SO/LU/0008/ 2011, dated 03.07.2012], and research project [2741/CCOST/MRP/2015, dated 24/03/2015], respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrakar, V., Pandey, N., Keshavkant, S. (2018). Plant Responses to Arsenic Toxicity: Morphology and Physiology. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_2

Download citation

Publish with us

Policies and ethics