Skip to main content

Agronomics Management for Arsenic Stress Mitigation

  • Chapter
  • First Online:
  • 544 Accesses

Abstract

Arsenic (As) accumulation in rice is considered as a new recognized disaster in Southeast Asia regions like Vietnam, Bangladesh, China, etc., where rice is considered as staple food. Rice cultivation required a huge volume of water for irrigation purposes. In Bangladesh and West Bengal, India, rice cultivation is mostly dependent on shallow contaminated groundwater tube well. Rice accumulates more As compared to other plants because they are grown mostly in flooded/anaerobic conditions. Rice accumulates As from the contaminated soil and also from the groundwater used for irrigation purpose. Exposure of high concentration of As through ingestion (mainly drinking water and eating contaminated rice) for long time span may affect the human health including cancers, melanosis, hyperkeratosis, lung disease, peripheral vascular disease, hypertension, and heart diseases. About one-third of the population of these regions is affected and suffers from various diseases. Widespread use of groundwater for irrigation suggests that ingestion of crops so produced could be a major source of As poisoning. Arsenic uptake by the rice plants via root tissues enters into plant body and edible parts (grains). Previous findings had reported rice grain samples with As accumulation much higher than the permissible limit (1 ppm) recommended by WHO. Arsenic uptake by rice plants depends on the plant species, physiochemical properties of the soil, redox conditions, and fertilization methods. Increase in concentration of phosphate in the soil through fertilization or by any other method could result in lower arsenate uptake by the plants because phosphate and As compete for the same transport protein (OS PHF1), and this results in competitive inhibition. Similarly, the use of silicon fertilizers results in lower arsenite uptake by the plants. In agricultural fields, providing aerobic conditions at regular intervals, selection of As-resistant rice varieties, and adoption of proper mitigation measures can reduce the bioaccumulation of As in rice plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Cotter-Howells J, Meharg AA et al (2002a) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311319

    Article  Google Scholar 

  • Abedin MJ, Cresser MS, Meharg AA et al (2002b) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36(5):962–968

    Article  CAS  PubMed  Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA et al (2002c) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128(3):1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ai P, Sun S, Zhao J et al (2009) Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  CAS  PubMed  Google Scholar 

  • Amaral DC, Lopes G, Guilherme LR et al (2016) A new approach to sampling intact Fe plaque reveals Si-induced changes in Fe mineral composition and shoot As in rice. Environ Sci Technol 51:38–45

    Article  PubMed  CAS  Google Scholar 

  • Andrew AS, Burgess JL, Meza MM et al (2006) Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect 114:1193. https://doi.org/10.1289/ehp.9008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aposhian HV, Zakharyan RA, Avram MD et al (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Majumdar J, Samal AC et al (2013) Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. J Environ Sci Toxicol Food Technol 3:1–10

    Google Scholar 

  • Barla A, Shrivastava A, Majumdar A et al (2017) Heavy metal dispersion in water saturated and water unsaturated soil of Bengal delta region, India. Chemosphere 168:807–816

    Article  CAS  PubMed  Google Scholar 

  • Belefant MH, Beaty T (2007) Distribution of arsenic and other minerals in rice plants affected by natural straight head. Agron J 99:1675–1681

    Article  Google Scholar 

  • Bianucci E, Sobrino PJ, Carpena RRO et al (2012) Contribution of phytochelatins to cadmium tolerance in peanut plants. Metallomics 4:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH) 3 and Sb (OH) 3 across membranes. BMC Biol 6:26. https://doi.org/10.1186/1741-7007-6-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brammer H (2009) Mitigation of arsenic contamination in irrigated paddy soils in South and South-east Asia. Environ Int 35:856–863

    Article  CAS  PubMed  Google Scholar 

  • Carbonell BAA, Aarabi MA, DeLaune RD et al (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S et al (2016) Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 152:520–529

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhu YG, Liu WJ et al (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97

    Article  CAS  PubMed  Google Scholar 

  • Chen XP, Zhu YG, Hong MN et al (2008) Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environ Toxicol Chem 27:881–887

    Article  PubMed  Google Scholar 

  • Chen Y, Faruque P, Mary G et al (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney CA (2001) Dietary selenium and arsenic affect DNA methylation. J Nutr 131:1871–1871

    Article  CAS  PubMed  Google Scholar 

  • Cox DP, Alexander M (1973) Effect of phosphate and other anions on trimethylarsine formation by Candida humicola. Appl Microbiol 25(3):408–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation—the same or not the same? Mol Plant 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and [gamma]-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140. https://doi.org/10.1038/nbt747

    Article  CAS  PubMed  Google Scholar 

  • Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2007) Spatial distribution and temporal variability of arsenic in irrigated Rice fields in Bangladesh. 2. Paddy soil. Environ Sci Technol 41(17):5967–5972

    Article  CAS  PubMed  Google Scholar 

  • Duxbury JM, Panaullah G (2007) Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh; FAO Water Working Paper, FAO:Rome, www.fao.org/nr/water/docs/FAOWATER_ARSENIC.pdf

  • Duxbury JM, Mayer AB, Lauren JG et al (2003) Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. J Environ Sci Health, Part A 38:61–69

    Article  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Biol 50:641–664

    Article  CAS  Google Scholar 

  • FAO I (2013) WFP. The state of food insecurity in the world, 214. Accessed 15 Nov 2017

    Google Scholar 

  • FAOSTAT F (2004) Agriculture organisation of the United Nations: online statistical service. http://faostat.fao.org. Accessed 15 Nov 2017

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 6:182. https://doi.org/10.3389/fphys.2012.00182

    Article  CAS  Google Scholar 

  • Fleck AT, Mattusch J, Schenk MK et al (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci 176:785–794

    CAS  Google Scholar 

  • Frommer J, Voegelin A, Dittmar J et al (2011) Biogeochemical processes and arsenic enrichment around rice roots in paddy soil: results from micro-focused X-ray spectroscopy. Eur J Soil Sci 62:305–317

    Article  Google Scholar 

  • González E, Solano R, Rubio V et al (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17(12):3500–3512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo W, Zhu YG, Liu WJ et al (2007) Is the effect of silicon on rice uptake of arsenate (As V) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environ Pollut 148:251–257

    Article  CAS  PubMed  Google Scholar 

  • Heimann AC, Blodau C, Postma D et al (2007) Hydrogen thresholds and steady-state concentrations associated with microbial arsenate respiration. Environ Sci Technol 41:2311–2317

    Article  CAS  PubMed  Google Scholar 

  • IRRI (International Rice Research institute) (2013) Online statistical service. http://irri.org. Accessed 15 Nov 2017

  • IRRI (International Rice Research institute) (2016) Online statistical service. http://irri.org. Accessed 15 Nov 2017

  • Isayenkov SV, Frans JMM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. FEBS Lett 582(11):1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Rahman MM, Islam MR et al (2016) Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk. Environ Int 96:139–155

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto R (1969) Straighthead of rice plants affected by functional abnormality of thiol-compound metabolism. Tokyo UnivAgr Mem 13:62–80

    Google Scholar 

  • Jakob R, Roth A, Haas K et al (2010) Atmospheric stability of arsines and the determination of their oxidative products in atmospheric aerosols (PM 10): evidence of the widespread phenomena of biovolatilization of arsenic. J Environ Monit 12:409–416

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Ren H, Gu M et al (2011) The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Huang H, Chen Z et al (2014) Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environ Sci Technol 48:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (2017) Meeting and World Health Organization, 2006. Safety evaluation of certain food additives (No. 56). World Health Organization. Accessed 15 Nov 2017

    Google Scholar 

  • Kamiya T, Tanaka M, Mitani N et al (2009) NIP1; 1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120

    Article  CAS  PubMed  Google Scholar 

  • Kapaj S, Peterson H, Liber K et al (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Health, Part A 41:2399–2428

    Article  CAS  Google Scholar 

  • Karimi N, Ghaderian SM, Raab A et al (2009) An arsenic-accumulating, hypertolerant brassica, Isatis cappadocica. New Phytol 184:41–47

    Article  CAS  PubMed  Google Scholar 

  • Lee RB (1982) Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency. Ann Bot 50:429–449

    Article  CAS  Google Scholar 

  • Lee CH, Huang HH, Syu CH et al (2014) Increase of as release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application. J Hazard Mater 276:253–261

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ et al (2009a) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150(4):2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RY, Stroud JL, Ma JF et al (2009b) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43(10):3778–3783

    Article  CAS  PubMed  Google Scholar 

  • Liao L, Xu J, Peng S et al (2013) Uptake and bioaccumulation of heavy metals in rice plants as affect by water saving irrigation. Adv J Food Sci Tech 5:1244–1248

    Article  Google Scholar 

  • Liu WJ, Zhu YG, Hu Y et al (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Leng X, Wang M et al (2011) Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol Environ Saf 74:1304–1309

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, McGrath SP, Zhao FJ et al (2014) Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant Soil 376:423–431

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Ma JF et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA (2007) Arsenic in rice – a literature review. Food Standards Agency, contract C101045 National Research Council (2001) arsenic in drinking water – 2001 update. National Academy Press, Washington, D.C., p 2001

    Google Scholar 

  • Meharg AA, Sun G, Williams PN, Adomako E, Deacon C, Zhu Y-G, Feldmann J, Raab A (2008) Inorganic arsenic levels in baby rice are of concern. Environ Pollut 152(3):746–749

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu Y-G, Feldmann J, Raab A, Zhao F-J, Islam R, Hossain S, Yanai J (2009) Geographical variation in Total and inorganic arsenic content of polished (white) Rice. Environ Sci Technol 43(5):1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Raab A (2010) Getting to the bottom of arsenic standards and guidelines. Environ Sci Technol 44(12):4395–4399

    Article  CAS  PubMed  Google Scholar 

  • Meyer J, Michalke K, Kouril T et al (2008) Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst Appl Microbiol 31:81–87

    Article  CAS  PubMed  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M et al (2000) Production of volatile derivatives of metal (loid) s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihucz VG, Virág I, Zang C et al (2007) Arsenic removal from rice by washing and cooking with water. Food Chem 105:1718–1725

    Article  CAS  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Zhao FJ et al (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  Google Scholar 

  • Moore LE, Lu M, Smith AH et al (2002) Childhood cancer incidence and arsenic exposure in drinking water in Nevada. Arch Environ Health 57:201–206

    Article  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT et al (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbial Rev 26:311–325

    Article  CAS  Google Scholar 

  • Naito S, Matsumoto E, Shindoh K et al (2015) Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem 168:294–301

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2001) Arsenic in drinking water – 2001 update. National Academy Press, Washington, D.C.

    Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Panaullah GM, Alam T, Hossain MB et al (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31. https://doi.org/10.1007/s11104-008-9786-y

    Article  CAS  Google Scholar 

  • Pandey M, Srivastava AK, Suprasanna P et al (2012) Thiourea mediates alleviation of UV-B stress-induced damage in the Indian mustard (Brassica juncea L.). J Plant Interact 7:143–150

    Article  CAS  Google Scholar 

  • Paszkowski U et al (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 99:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering IJ, Prince RC, George MJ et al (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Biol 50(1):665–693

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MA et al (2006) Influence of cooking method on arsenic retention in cooked rice related to dietary exposure. Sci Total Environ 370:51–60

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM et al (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S et al (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995

    Article  CAS  PubMed  Google Scholar 

  • Rana T, Bera AK, Das S et al (2010) Effect of chronic intake of arsenic-contaminated water on blood oxidative stress indices in cattle in an arsenic-affected zone. Ecotoxicol Environ Saf 73:1327–1332

    Article  CAS  PubMed  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K et al (2009) Arsenic pollution, a global synthesis, RGS-IBG book series. Wiley-Blackwell, Oxford

    Google Scholar 

  • Rhine ED, Phelps CD, Young LY et al (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908

    Article  CAS  PubMed  Google Scholar 

  • Rowland HAL, Boothman C, Pancost R et al (2009) The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from West Bengal aquifer sediments. J Environ Qual 38:1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Saleh MA (2009) Erythrocytic oxidative damage in crossbred cattle naturally infected with Babesia bigemina. Res Vet Sci 86:43–48

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Basu B, Kundu CK et al (2012) Deficit irrigation: An option to mitigate arsenic load of rice grain in West Bengal, India. Agric Ecosyst Environ 146:147–152

    Article  CAS  Google Scholar 

  • Sarkar SR, Majumdar A, Barla A et al (2017) A conjugative study of Typha latifolia for expunge of phyto-available heavy metals in fly ash ameliorated soil. Geoderma 305:354–362

    Article  CAS  Google Scholar 

  • Schaller J, Brackhage C, Gessner MO et al (2012) Silicon supply modifies C: N: P stoichiometry and growth of Phragmites australis. Plant Biol 14:392–396

    Article  CAS  PubMed  Google Scholar 

  • Schwertmann U, Thalmann H (1976) The influence of [Fe (II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeC12 solutions. Clay Miner 11:189

    Article  CAS  Google Scholar 

  • Scientific Opinion on Arsenic in Food (2009) EFSA J 7(10):1351

    Article  Google Scholar 

  • Sengupta MK, Hossain MA, Mukherjee A et al (2006) Arsenic burden of cooked rice: traditional and modern methods. Food Chem Toxicol 44:1823–1829

    Article  CAS  PubMed  Google Scholar 

  • Seyfferth AL (2015) Abiotic effects of dissolved oxyanions on iron plaque quantity and mineral composition in a simulated rhizosphere. Plant Soil 397:43–61

    Article  CAS  Google Scholar 

  • Seyfferth AL, Fendorf S (2012) Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Technol 46:13176–13183

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Dewbre GR et al (2004) Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Shrivastava A, Barla A et al (2015) Isolation of arsenic-resistant bacteria from Bengal delta sediments and their efficacy in arsenic removal from soil in association with Pteris vittata. Geomicrobiol J 32(8):712–723

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith AH, Steinmaus CM (2009) Health effects of arsenic and chromium in drinking water: recent human findings. Annu Rev Public Health 30:107–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Somenahally AC, Hollister EB, Yan W et al (2011) Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environ Sci Technol 45:8328–8335

    Article  CAS  PubMed  Google Scholar 

  • Song WY et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z, Liu H, Zhao F et al (2014) Ecological stoichiometry of N: P: Si in China’s grasslands. Plant Soil 380:165–179

    Article  CAS  Google Scholar 

  • Sowemimo CSO (2002) Red blood cell hemolysis during processing. Transfus Med Rev 16:46–60

    Article  Google Scholar 

  • Spanu A, Daga L, Orlandoni AM et al (2012) The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environ Sci Technol 46:8333–8340

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Srivastava S, Penna S et al (2011a) Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl-induced oxidative damage in Indian mustard (Brassica juncea (L.) Czern.). Plant Physiol Biochem 49(6):676–686

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF et al (2011b) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248(4):805–815

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Srivastava S, Mishra S et al (2014) Identification of redox-regulated components of arsenate (As V) tolerance through thiourea supplementation in rice. Metallomics 6:1718–1730

    Article  CAS  PubMed  Google Scholar 

  • Stroud JL, Norton GJ, Islam MR et al (2011) The dynamics of arsenic in four paddy fields in the Bengal delta. Environ Pollut 159:947–953

    Article  CAS  PubMed  Google Scholar 

  • Swedlund PJ, Webster JG (1999) Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res 33:3413–3422

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH et al (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M et al (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu T, Aoki H, Yoshida T et al (1982) Determination of arsenate, arsenite, monomethylarsonate, and dimethylarsinate in soil polluted with arsenic. Soil Sci 133:239–246

    Article  CAS  Google Scholar 

  • Teasley WA, Limmer MA, Seyfferth AL et al (2017) How rice (Oryza sativa L.) responds to elevated As under different Si-rich soil amendments. Environ Sci Technol 51:10335–10343

    Article  CAS  PubMed  Google Scholar 

  • Vahter M (2009) Effects of arsenic on maternal and fetal health. Annu Rev Nutr 29:381–399

    Article  CAS  PubMed  Google Scholar 

  • Valentine BA, Rumbeiha WK, Hensley TS et al (2007) Arsenic and metaldehyde toxicosis in a beef herd. J Vet Diagn Investig 19:212–215

    Article  Google Scholar 

  • Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  PubMed  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM et al (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren GP, Alloway BJ, Lepp NW et al (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ 311:19–33

    Article  CAS  PubMed  Google Scholar 

  • Weng L, Van Riemsdijk WH, Hiemstra T et al (2009) Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Environ Sci Technol 43:7198–7204

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2001). Arsenic in drinking water. http://www.who.int/inf-fs/en/fact210.html (30 May 2001)

  • World Health Organization (2004). IARC, Working Group on some drinking water disinfectants and contaminants, including arsenic, vol. 84. Lyon. Monograph 1

    Google Scholar 

  • WHO (2007). Joint FAO/WHO Expert Standards Program Codex Alimentation Commission. Geneva. Available online at:http://www.who.int (Accessed 10 Sep 2012)

  • Williams PN, Price AH, Raab A et al (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  PubMed  Google Scholar 

  • Williams PN, Raab A, Feldmann J et al (2007a) Market basket survey shows elevated levels of a s in south central US processed rice compared to California: consequences for human dietary exposure. Environ Sci Technol 41(7):2178–2183

    Article  CAS  PubMed  Google Scholar 

  • Williams PN, Villada A, Deacon C et al (2007b) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP et al (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Meharg AA et al (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ago Y, Mitani N et al (2010a) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186(2):392–399

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA et al (2010b) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barla, A., Sathyavelu, S., Afsal, F., Ojha, M., Bose, S. (2018). Agronomics Management for Arsenic Stress Mitigation. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_15

Download citation

Publish with us

Policies and ethics