Skip to main content

Algae as a Budding Tool for Mitigation of Arsenic from Aquatic Systems

  • Chapter
  • First Online:

Abstract

Arsenic (As) pollution in aquatic environment has become one of the most severe ecological problems affecting the provision of clean drinking water in many countries. To combat this, numerous physicochemical methods have been developed including adsorption, ion exchange, biosorption, solar stills, etc. However, the barrier to the successful deployment of these methods lies in the differential removal and disposal efficiency of As species/wastes generated during the treatment. Plants and algae are currently considered as efficient biotechnological tools for safe As remediation from contaminated soil and water sources. In the current chapter, we will focus on algal (micro and macro)-based As bioremediation mechanism and the influence of environmental factors on its uptake from contaminated aquatic systems. Utilization of algae for As bioremediation has an edge over other conventional technologies as it can efficiently accumulate and metabolize all the As species with adequate efficiency, along with generation of biomass that can be used as biofertilizers and biofuels. Recent studies have shown that algal strains can grow in 500–2000 mg per liter of As waters and can remediate a substantial quantity by rewiring their cellular physiology. In a nutshell, the chapter provides a detailed mechanistic overview of algal-based eco-friendly As mitigation processes for generating sustainable environmental solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul KSM, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PMC (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846

    Article  PubMed  CAS  Google Scholar 

  • Abtahi M, Mesdaghinia A, Saeedi R, Nazmara S (2013) Biosorption of As (III) and As (V) from aqueous solutions by brown macroalga Colpomenia sinuosa biomass: kinetic and equilibrium studies. Desalin Water Treat 51:3224–3232

    Article  CAS  Google Scholar 

  • Acreman J (1994) Algae and cyanobacteria: isolation, culture and long-term maintenance. J Ind Microbiol Biotechnol 13:193–194

    Google Scholar 

  • Al Abdallah Q, Nixon BT, Fortwendel JR (2016) The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energy Res 4:36. https://doi.org/10.3389/fenrg.2016.00036

    Article  Google Scholar 

  • Alexander J et al (2009) EFSA panel on contaminants in the food chain (CONTAM); scientific opinion on marine biotoxins in shellfish—Palytoxin group. EFSA J 1393:1–38

    Google Scholar 

  • Andersen R (1992) Diversity of eukaryotic algae. Biodivers Conserv 1:267–292

    Article  Google Scholar 

  • Arora N, Patel A, Pruthi PA, Pruthi V (2016) Recycled de-oiled algal biomass extract as a feedstock for boosting biodiesel production from Chlorella minutissima. Appl Biochem Biotechnol 180:1534–1541

    Article  CAS  PubMed  Google Scholar 

  • Arora N, Gulati K, Patel A, Pruthi PA, Poluri KM, Pruthi V (2017) A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Res 24:29–39

    Article  Google Scholar 

  • Ashokkumar V, Salam Z, Tiwari O, Chinnasamy S, Mohammed S, Ani FN (2015) An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Conver Manag 101:778–786

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25:913–917

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2016) Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp. Environ Sci Pollut Res 23:2663–2668

    Article  CAS  Google Scholar 

  • Baker J, Wallschläger D (2016) The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris. J Environ Sci 49:169–178

    Article  Google Scholar 

  • Baker M, Wong P, Chau Y, Mayfield C, Inniss W (1983) Methylation of arsenic by freshwater green algae. Can J Fish Aquat Sci 40:1254–1257

    Article  CAS  Google Scholar 

  • Benson A, Cooney R, Herrera-Lasso J (1981) Arsenic metabolism in algae and higher plants. J Plant Nutr 3:285–292

    Article  CAS  Google Scholar 

  • Bentley C (2005) The toxicity of trimethylarsine: an urban myth. J Environ Monit 7:11–15

    Article  CAS  Google Scholar 

  • Bhattacharya P, Pal R (2012) Scope of phycoremediation of Arsenic using Phormidium tenue with special reference to modulation in cellular biochemistry. J Algal Biomass Util 3:1–8

    Google Scholar 

  • Bibi R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A (2016) Algal bioethanol production technology: a trend towards sustainable development. Renew Sust Energ Rev 71:976–985

    Article  CAS  Google Scholar 

  • Bottino N, Newman R, Cox E, Stockton R, Hoban M, Zingaro R, Irgolic K (1978) The effects of arsenate and arsenite on the growth and morphology of the marine unicellular algae Tetraselmis chui (Chlorophyta) and Hymenomonas carterae (Chrysophyta). J Exp Mar Biol Ecol 33:153–168

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brookin D (1988) Eh-pH diagrams for geochemistry. Springer, Berlin

    Book  Google Scholar 

  • Bundschuh J, Bhattacharya P, Sracek O, Mellano MF, Ramírez AE, Storniolo ADR et al (2011) Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. J Environ Sci Health A 46:1297–1310

    Article  CAS  Google Scholar 

  • Caumette G, Koch I, House K, Reimer KJ (2014) Arsenic cycling in freshwater phytoplankton and zooplankton cultures. Environ Chem 11:496–505

    Article  CAS  Google Scholar 

  • Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4:873–880

    Google Scholar 

  • Chng LM, Chan DJ, Lee KT (2016) Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. J Clean Prod 130:68–73

    Article  CAS  Google Scholar 

  • Christobel J, Lipton A (2015) Evaluation of macroalgal biomass for removal of heavy metal arsenic (As) from aqueous solution. Int J Appl Innov Eng Manag 4:94–104

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43:403–448

    Article  CAS  PubMed  Google Scholar 

  • Doshi A, Pascoe S, Coglan L, Rainey TJ (2016) Economic and policy issues in the production of algae-based biofuels: a review. Renew Sust Energ Rev 64:329–337

    Article  Google Scholar 

  • Duncan E, Foster S, Maher W (2010) Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta. Bot Mar 53:377–386

    Article  CAS  Google Scholar 

  • Duncan EG, Maher WA, Foster SD, Krikowa F (2013a) The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Mar Chem 157:78–85

    Article  CAS  Google Scholar 

  • Duncan EG, Maher WA, Foster SD, Krikowa F (2013b) Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana. Environ Chem 10:91–101

    Article  CAS  Google Scholar 

  • Duncan EG, Maher WA, Foster SD (2014a) Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. Environ Sci Technol 49:33–50

    Article  PubMed  CAS  Google Scholar 

  • Duncan EG, Maher WA, Foster SD, Mikac KM, Krikowa F (2014b) The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta. J Appl Phycol 26:2129–2134

    Article  CAS  Google Scholar 

  • Edmonds J, Francesconi K (1981) Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 289:602–604

    Article  CAS  Google Scholar 

  • Edmonds J, Shibata Y, Francesconi K, Rippingale R, Morita M (1997) Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl Organomet Chem 11:281–287

    Article  CAS  Google Scholar 

  • Felmy A, Girvin D, Jenne E (1984) MINTEQ-a computer program for calculating aqueous geochemical equilibria. National Technical Information Service, Springfield

    Google Scholar 

  • Ferrari SG, Silva PG, González DM, Navoni JA, Silva HJ (2013) Tolerancia a arsénico de cianobacterias con usos biotecnológicos. Rev Argent Microbiol 45:174–174

    CAS  PubMed  Google Scholar 

  • Foster S, Thomson D, Maher W (2008) Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar Chem 108:172–183

    Article  CAS  Google Scholar 

  • Fowler BA (2013) Biological and environmental effects of arsenic. Elsevier, New York

    Google Scholar 

  • Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82:373–381

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr (2001) Environmental chemistry of arsenic. Marcel Dekker, New York

    Book  Google Scholar 

  • Frassanito AM, Barsanti L, Passarelli V, Evangelista V, Gualtieri P (2010) A rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization. Cell Mol Life Sci 67:965–971

    Article  CAS  PubMed  Google Scholar 

  • Fuhua C, Weiqi C, Shugui D (1994) Toxicities of four arsenic species to Scenedesmus obliquus and influence of phosphate on inorganic arsenic toxicities. Toxicol Environ Chem 41:1–7

    Article  Google Scholar 

  • Fujiwara S, Kobayashi I, Hoshino S, Kaise T, Shimogawara K, Usuda H, Tsuzuki M (2000) Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii. Plant Cell Physiol 41:77–83

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061

    Article  PubMed  Google Scholar 

  • Geiszinger A, Goessler W, Pedersen SN, Francesconi KA (2001) Arsenic biotransformation by the brown macroalga Fucus serratus. Environ Toxicol Chem 20:2255–2262

    Article  CAS  PubMed  Google Scholar 

  • Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sust Energ Rev 54:473–481

    Article  CAS  Google Scholar 

  • Granchinho S, Cullen W, Polishchuk E, Reimer K (2004) The effect of phosphate on the bioaccumulation and biotransformation of arsenic (V) by the marine alga Fucus gardneri. In: Hirner AV, Emons H (eds) Organic metal and metalloid species in the environment. Springer, Berlin, pp 155–166

    Chapter  Google Scholar 

  • Grotti M, Soggia F, Lagomarsino C, Goessler W, Francesconi KA (2008) Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica. Environ Chem 5:171–175

    Article  CAS  Google Scholar 

  • Guo P, Gong Y, Wang C, Liu X, Liu J (2011) Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes. Environ Toxicol Chem 30:1754–1759

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Srivastava S, Huang H, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Berlin, pp 169–179

    Chapter  Google Scholar 

  • Gupta R, Biswas K, Mishra I, Suthindhiran K (2012) Ethanol production from marine algae using yeast fermentation. Biosci Technol 1:17–22

    Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic (V) with Lessonia nigrescens. Min Eng 19:486–490

    Article  CAS  Google Scholar 

  • Hasegawa H, Sohrin Y, Seki K, Sato M, Norisuye K, Naito K, Matsui M (2001) Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae. Chemosphere 43:265–272

    Article  CAS  PubMed  Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González M (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  CAS  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013a) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Li P-J, Liu C-C, Chang J-S (2013b) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 145:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749

    Article  CAS  PubMed  Google Scholar 

  • Huang W-J, Wu C-C, Chang W-C (2014) Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir. Environ Monit Asses 186:805–814

    Article  CAS  Google Scholar 

  • Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325

    Article  CAS  Google Scholar 

  • Jasrotia S, Kansal A, Kishore V (2014) Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem J 114:197–202

    Article  CAS  Google Scholar 

  • Jiang Y, Purchase D, Jones H, Garelick H (2011) Effects of arsenate (As5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris international. J Phytorem 13:834–844

    Article  CAS  Google Scholar 

  • Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271

    Article  CAS  PubMed  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26

    Article  CAS  PubMed  Google Scholar 

  • Kile ML et al (2011) A pathway-based analysis of urinary arsenic metabolites and skin lesions. Am J Epidemiol 173:778–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Knauer K, Hemond H (2000) Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta). J Phycol 36:506–509

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi I, Fujiwara S, Shimogawara K, Kaise T, Usuda H, Tsuzuki M (2003) Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on Chlamydomonas. Plant Cell Physiol 44:597–606

    Article  CAS  PubMed  Google Scholar 

  • Kostas ET, White DA, Du C, Cook DJ (2016) Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol 28:1427–1441

    Article  CAS  PubMed  Google Scholar 

  • Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Kumaresan M, Riyazuddin P (2001) Overview of speciation chemistry of arsenic. Curr Sci 80:837–846

    CAS  Google Scholar 

  • Lai VWM, Cullen WR, Harrington CF, Reimer KJ (1997) The characterization of arsenosugars in commercially available algal products including a Nostoc species of terrestrial origin. Appl Organomet Chem 11:797–803

    Article  CAS  Google Scholar 

  • Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 24:2630–2639

    Article  CAS  PubMed  Google Scholar 

  • Lièvremont D, Bertin PN, Lett MC (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Lim K, Shukor M, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res Int 2014:503784. https://doi.org/10.1155/2014/503784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente-Mirandes T, Ruiz-Chancho MJ, Barbero M, Rubio R, López-Sánchez JF (2010) Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurence of arsenobetaine. Chemosphere 81:867–875

    Article  CAS  PubMed  Google Scholar 

  • Lunde G (1973) The synthesis of fat and water soluble arseno organic compounds in marine and limnetic algae. Acta Chem Scand 27:1586–1594

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Nakashima S, Takeshita T, Higashi S (1985) Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment. Sep Sci Technol 20:153–161

    Article  CAS  Google Scholar 

  • Maeda S, Kusadome K, Arima H, Ohki A, Naka K (1992) Biomethylation of arsenic and its excretion by the alga Chlorella vulgaris. Appl Organomet Chem 6:407–413

    Article  CAS  Google Scholar 

  • Maity JP, Bundschuh J, Chen C-Y, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives–a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Markley CT, Herbert BE (2010) Modeling phosphate influence on arsenate reduction kinetics by a freshwater cyanobacterium. Environ Model Asses 15:361–368

    Article  Google Scholar 

  • Marshall G et al (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mehtani J, Arora N, Patel A, Jain P, Pruthi PA, Poluri KM, Pruthi V (2017) Augmented lipid accumulation in ethyl methyl sulphonate mutants of oleaginous microalga for biodiesel production. Bioresour Technol 242:121–127

    Article  CAS  PubMed  Google Scholar 

  • Meyer J, Schmidt A, Michalke K, Hensel R (2007) Volatilisation of metals and metalloids by the microbial population of an alluvial soil. Syst Appl Microbiol 30:229–238

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Schulz J, Jeibmann A, Taleshi MS, Ebert F, Francesconi K, Schwerdtle T (2014) Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster. Metallomics 6:2010–2014

    Article  CAS  PubMed  Google Scholar 

  • Michalke K, Hensel R (2004) Biovolatilisation of metal (loid) s by microorganisms. In: Hirner AV, Emons H (eds) Organic metal and metalloid species in the environment. Springer, Berlin, pp 137–153

    Chapter  Google Scholar 

  • Mitchell VL (2014) Health risks associated with chronic exposures to arsenic in the environment. Rev Mineral Geochem 79:435–449

    Article  Google Scholar 

  • Miyashita S, Fujiwara S, Tsuzuki M, Kaise T (2011) Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 75:522–530

    Article  CAS  PubMed  Google Scholar 

  • Miyashita S-i, Fujiwara S, Tsuzuki M, Kaise T (2012) Cyanobacteria produce arsenosugars. Environ Chem 9:474–484

    Article  CAS  Google Scholar 

  • Miyashita SI, Murota C, Kondo K, Fujiwara S, Tsuzuki M (2016) Arsenic metabolism in cyanobacteria. Environ Chem 13:577–589

    Article  CAS  Google Scholar 

  • Mondal P, Bhowmick S, Chatterjee D, Figoli A, Van der Bruggen B (2013) Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere 92:157–170

    Article  CAS  PubMed  Google Scholar 

  • Munoz LP, Purchase D, Jones H, Raab A, Urgast D, Feldmann J, Garelick H (2016) The mechanisms of detoxification of As (III), dimethylarsinic acid (DMA) and As (V) in the microalga Chlorella vulgaris. Aquat Toxicol 175:56–72

    Article  CAS  Google Scholar 

  • Murota C et al (2012) Arsenic tolerance in a Chlamydomonas photosynthetic mutant is due to reduced arsenic uptake even in light conditions. Planta 236:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Murray LA, Raab A, Marr IL, Feldmann J (2003) Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl Organomet Chem 17:669–674

    Article  CAS  Google Scholar 

  • Nischwitz V, Pergantis SA (2005) First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS. Analyst 130:1348–1350

    Article  CAS  PubMed  Google Scholar 

  • Nissen P, Benson A (1982) Arsenic metabolism in freshwater and terrestrial plants. Physiol Plant 54:446–450

    Article  CAS  Google Scholar 

  • Nriagu J, Bhattacharya P, Mukherjee A, Bundschuh J, Zevenhoven R, Loeppert R (2007) Arsenic in soil and groundwater: an overview. Trace Met Contam Environ 9:3–60

    Article  CAS  Google Scholar 

  • Odjadjare EC, Mutanda T, Olaniran AO (2017) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52

    Article  CAS  PubMed  Google Scholar 

  • Ohki A, Maeda S (2001) Biotransformation of arsenite in freshwater food-chain models. Appl Organomet Chem 15:277–284

    Article  Google Scholar 

  • Ohki A, Kuroiwa T, Maeda S (1999) Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite. Appl Organomet Chem 13:127–133

    Article  Google Scholar 

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46:861–875

    Article  Google Scholar 

  • Painter TJ (1993) Carbohydrate polymers in desert reclamation: the potential of microalgal biofertilizers. Carbohydr Polym 20:77–86

    Article  CAS  Google Scholar 

  • Podder M, Majumder C (2016) Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecol Sin 36:256–268

    Article  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Kim K-H, Saha SK, Swaraz A, Paul DK (2014) Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms. J Environ Manag 134:175–185

    Article  CAS  Google Scholar 

  • Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renuka N et al (2016) Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res 23:6608–6620

    Article  CAS  Google Scholar 

  • Sanders JG (1979) The concentration and speciation of arsenic in marine macro-algae. Estuar Coast Mar Sci 9:95–99

    Article  CAS  Google Scholar 

  • Sanders JG, Windom HL (1980) The uptake and reduction of arsenic species by marine algae. Estuar Coast Mar Sci 10:555–567

    Article  CAS  Google Scholar 

  • Sari A, Uluozlü ÖD, Tüzen M (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chem Eng J 167:155–161

    Article  CAS  Google Scholar 

  • Scow K, Byrne M, Goyer M, Nelken L, Perwak J, Wood M, Young S (1981) Final Draft Report to the US Environmental Protection Agency EPA Contract

    Google Scholar 

  • Simas-Rodrigues C, Villela HD, Martins AP, Marques LG, Colepicolo P, Tonon AP (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66:4097–4108

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  CAS  PubMed  Google Scholar 

  • Sirajunnisa AR, Surendhiran D (2016) Algae–a quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sust Energ Rev 66:248–267

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Takimura O, Fuse H, Yamaoka Y (1990) Effect of metal ions on accumulation of arsenic in marine green algae, Dunaliella sp. Appl Organomet Chem 4:265–268

    Article  CAS  Google Scholar 

  • Takimura O, Fuse H, Murakami K, Kamimura K, Yamaoka Y (1996) Uptake and reduction of arsenate by Dunaliella sp. Appl Organomet Chem 10:753–756

    Article  CAS  Google Scholar 

  • Thiel T (1988) Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J Bacteriol 170:1143–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuzen M, Sari A, Mendil D, Uluozlu OD, Soylak M, Dogan M (2009) Characterization of biosorption process of As (III) on green algae Ulothrix cylindricum. J Hazard Mater 165:566–572

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay A, Mandotra S, Kumar N, Singh N, Singh L, Rai U (2016) Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresour Technol 221:430–437

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Luo Z, Yan C (2013) Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ Sci Pollut Res 20:7286–7295

    Article  CAS  Google Scholar 

  • Wang Y et al (2015) Review of arsenic speciation, toxicity and metabolism in microalgae. Rev Environ Sci Bio Technol 14:427–451

    Article  CAS  Google Scholar 

  • Wang Y et al (2016) Arsenate toxicity and metabolism in the halotolerant microalga Dunaliella salina under various phosphate regimes. Environ Sci Processes Impacts 18:735–743

    Article  CAS  Google Scholar 

  • Wang Y, Zhang C, Zheng Y, Ge Y (2017) Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. Ecotoxicol Environ Saf 136:150–160

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Lewis D, Green F (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Wen W et al (2011) Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers. Toxicol Appl Pharmacol 254:41–47

    Article  CAS  PubMed  Google Scholar 

  • WHO G (2011) Guidelines for drinking-water quality. World Health Organ 216:303–304

    Google Scholar 

  • Williams PJB, Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Wrench J, Addison R (1981) Reduction, methylation, and incorporation of arsenic into lipids by the marine phytoplankton Dunaliella tertiolecta. Can J Fish Aquat Sci 38:518–523

    Article  CAS  Google Scholar 

  • Wurl O, Zimmer L, Cutter GA (2013) Arsenic and phosphorus biogeochemistry in the ocean: arsenic species as proxies for P-limitation. Limnol Oceanogr 58:729–740

    Article  CAS  Google Scholar 

  • Xue X-M, Raber G, Foster S, Chen S-C, Francesconi KA, Zhu Y-G (2014) Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environ Chem 11:506–513

    Article  CAS  Google Scholar 

  • Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118:1–9

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka Y, Takimura O, Fuse H (1994) Effects of various elements on arsenic accumulation of the alga Dunaliella salina. Appl Organomet Chem 8:229–235

    Article  CAS  Google Scholar 

  • Yamaoka Y, Takimura O, Fuse H, Murakami K (1999) Effect of glutathione on arsenic accumulation by Dunaliella salina. Appl Organomet Chem 13:89–94

    Article  CAS  Google Scholar 

  • Yan X-P, Kerrich R, Hendry MJ (2000) Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan. Geochim Cosmochim Acta 64:2637–2648

    Article  CAS  Google Scholar 

  • Yan C, Wang Z, Luo Z (2014) Arsenic efflux from Microcystis aeruginosa under different phosphate regimes. PLoS One 9:e116099. https://doi.org/10.1371/journal.pone.0116099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Rensing C, Rosen BP, Zhu Y-G (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Chen J, Qin J, Sun G, Rosen B, Zhu Y (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. https://doi.org/10.1104/pp.111.178947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X-X, Wang L, Bai R, Huang H, Sun G-X (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223:1183–1190

    Article  CAS  Google Scholar 

  • Zhang B, Wang L-H, Xu Y-X, Yin X-X (2011) Study on absorption and transformation of arsenic in blue alga (Synechocystis sp. PCC6803). Asian J Ecotoxicol 6:629

    CAS  Google Scholar 

  • Zhang S-Y, Sun G-X, Yin X-X, Rensing C, Zhu Y-G (2013) Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere 93:47–53

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu X, White MA, Colosi LM (2017) Economic evaluation of algae biodiesel based on meta-analyses. Int J Sustain Energy 36:682–694

    Article  CAS  Google Scholar 

  • Zhao F-J, Zhu Y-G, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47:3957–3966

    Article  CAS  PubMed  Google Scholar 

  • Zouboulis AI, Katsoyiannis IA (2005) Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environ Int 31:213–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

KMP acknowledges the support of SERB (SB/YS/LS-380/2013), DBT-IYBA fellowship (BT/07/IYBA/2013-19), and MoWR (GKC/01/2016-17/212/NMCG) Research grants from the Government of India (GoI). NA is thankful to the Department of Biotechnology (DBT) for SRF fellowship (Grant No.: 7001-35-44). KG and ST acknowledge the MHRD fellowship from IIT-Roorkee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Mohan Poluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, N., Gulati, K., Tripathi, S., Pruthi, V., Poluri, K.M. (2018). Algae as a Budding Tool for Mitigation of Arsenic from Aquatic Systems. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_12

Download citation

Publish with us

Policies and ethics