Skip to main content

Control of Physical Changes in Food Products

  • Chapter
  • First Online:
Survival Strategies in Extreme Cold and Desiccation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

Food is a multicomponent system that mainly comprises protein, carbohydrate, fat, and water. During food processing and preservation, various physical changes (e.g., melting, crystallization, glass transition) occur in food products, affecting their quality. This chapter specifically examines the effect of physical changes on the quality of dry and frozen food products. Dry food products are commonly in an amorphous state. Therefore, glass transition occurs during their dehydration–rehydration processing. To control their texture and physical stability, it is important to elucidate the effects of water contents on the glass transition temperature of dry food products. Frozen foods consist of ice crystals and freeze-concentrated matrix. The formation of ice crystal and the dynamics of ice crystal evolution affect food quality. Therefore control of ice crystals is important for high-quality frozen food. Moreover, because freeze-concentrated matrix consists of solute that are plasticized by the unfrozen water and is in an amorphous state, it can undergo glass transition by freeze concentration. The physical state of freeze-concentrated matrix also strongly affects the stability of food quality during frozen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Antifreeze protein

DSC:

Differential scanning calorimetry

MD:

Maltodextrin

T g :

Glass transition temperature

T g′:

Glass transition temperature of the maximally freeze-concentrated phase

TRA:

Thermal rheological analysis

W c :

Critical water content

References

  • Ablett S, Clarke CJ, Izzard MJ, Martin DR (2002) Relationship between ice recrystallisation rates and the glass transition in frozen sugar solutions. J Sci Food Agr 82:1855–1859

    Article  CAS  Google Scholar 

  • Agustini TW, Suzuki T, Hagiwara T, Ishizaki S, Tanaka M, Takai R (2001) Change of K value and water state of yellowfin tuna (Thunnus albacares) meat stored in wide temperature range (20°C to −84°C). Fish Sci 67:306–313

    Article  CAS  Google Scholar 

  • Angell CA, Bressel RD, Green JL, Kanno H, Oguni M, Sare EJ (1994) Liquid fragility and the glass transition in water and aqueous solutions. J Food Eng 22:115–142

    Article  Google Scholar 

  • Bai Y, Rahman MS, Perera CO, Smith B, Melton LD (2001) State diagram of apple slices: glass transition and freezing curves. Food Res Int 34:89–95

    Article  Google Scholar 

  • Bayindirli L, Özilgen M, Ungan S (1993) Mathematical analysis of freeze concentration of apple juice. J Food Eng 19:95–l07

    Article  Google Scholar 

  • Bevilacqua AE, Zaritzky NE (1982) Ice recrystallization in frozen beef. J Food Sci 47:1410–1414

    Article  Google Scholar 

  • Boonyai P, Howes T, Bhandari B (2007) Instrumentation and testing of a thermal mechanical compression test for glass–rubber transition analysis of food powders. J Food Eng 78:1333–1342

    Article  Google Scholar 

  • Cano-Chauca M, Stringheta PC, Ramos AM, Cal-Vidal J (2005) Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov Food Sci Emerg Technol 6:420–428

    Article  CAS  Google Scholar 

  • Chevallier S, Valle GD, Colonna P, Broyart B, Trystram G (2002) Structural and chemical modifications of short dough during baking. J Cereal Sci 35:1–10

    Article  CAS  Google Scholar 

  • Davies PL, Hew CL (1990) Biochemistry of fish antifreeze proteins. FASEB J 4:2460–2468

    Article  CAS  Google Scholar 

  • Deshpande SS, Bolin HR, Salunkhe DK (1982) Freeze concentration of fruit juices. Food Technol May:68–82

    Google Scholar 

  • Donhowe DP, Hartel RW (1996a) Recrystallization of ice in ice cream during controlled accelerated storage. Int Dairy J 6:1191–1208

    Article  Google Scholar 

  • Donhowe DP, Hartel RW (1996b) Recrystallization of ice during bulk storage of ice cream. Int Dairy J 6:1209–1221

    Article  Google Scholar 

  • Fabra MJ, Márquez E, Castro D, Chiralt A (2011) Effect of maltodextrins in the water-content – water activity – glass transition relationships of noni (Morinda citrifolia L.) pulp powder. J Food Eng 103:47–51

    Article  CAS  Google Scholar 

  • Fennema OR, Powrie WD, Marth EH (1973) Low-temperature preservation of foods and living matter. Marcel Dekker, New York

    Google Scholar 

  • Fongin S, Kawai K, Harnkarnsujarit N, Hagura Y (2017) Effects of water and maltodextrin on the glass transition temperature of freeze-dried mango pulp and an empirical model to predict plasticizing effect of water on dried fruits. J Food Eng 210:91–97

    Article  CAS  Google Scholar 

  • Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge

    Google Scholar 

  • Goula AM, Adamopoulos KG (2008) Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery. Dry Technol 26:714–725

    Article  CAS  Google Scholar 

  • Goula AM, Adamopoulos KG (2010) A new technique for spray drying orange juice concentrate. Innov Food Sci Emerg 11:342–351

    Article  CAS  Google Scholar 

  • Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–328

    Article  CAS  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  CAS  Google Scholar 

  • Hagiwara T, Hartel RW (1996) Effect of sweetener, stabilizer, and storage temperature on ice recrystallization in ice cream. J Dairy Sci 79:735–744

    Article  CAS  Google Scholar 

  • Hagiwara T, Mao J, Suzuki T, Takai R (2005) Ice recrystallization in sucrose solutions stored at temperatures of −21°C to −50°C. Food Sci Technol Res 11:407–411

    Article  CAS  Google Scholar 

  • Hagiwara T, Hartel RW, Matsukawa S (2006) Relationship between recrystallization rate of ice crystals in sugar solutions and water mobility in freeze-concentrated matrix. Food Biophys 1:74–82

    Article  Google Scholar 

  • Hagiwara T, Sakiyama T, Watanabe H (2009) Estimation of water diffusion coefficients in freeze-concentrated matrices of sugar solutions using molecular dynamics. Food Biophys 4:340–346

    Article  Google Scholar 

  • Hagiwara T, Ohmoto E, Tokizawa K, Sakiyama T (2011) Recrystallization behavior of ice crystals in sucrose solution in the presence of AFP Type I. In 11th International Congress on Engineering and Food (ICEF11), Athens, 2011, http://www.icef11.org/main.php?fullpaper&categ=AFT

  • Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12:799–806

    Article  CAS  Google Scholar 

  • Haque MK, Kawai K, Suzuki T (2006) Glass transition and enthalpy relaxation of amorphous lactose glass. Carbohydr Res 341:1884–1889

    Article  CAS  Google Scholar 

  • Harnkarnsujarit N, Charoenrein S (2011a) Effect of water activity on sugar crystallization and β-carotene stability of freeze-dried mango powder. J Food Eng 105:592–598

    Article  CAS  Google Scholar 

  • Harnkarnsujarit N, Charoenrein S (2011b) Influence of collapsed structure on stability of β-carotene in freeze-dried mangoes. Food Res Int 44:3188–3194

    Article  CAS  Google Scholar 

  • Hartel RW (1998) Mechanisms and kinetics of recrystallization in ice cream. In: Reid DS (ed) The Properties of Water in Foods: ISOPOW 6. Blackie Academic & Professional, London, pp 287–319

    Chapter  Google Scholar 

  • Hartel RW (2001) Crystallization in foods. Aspen Publisher, Gaithersburg

    Google Scholar 

  • Hartel RW, Espinel LA (1993) Freeze concentration of skim milk. J Food Eng 20:101–120

    Article  Google Scholar 

  • Hashimoto T, Hagiwara T, Suzuki T, Takai R (2004) Study of the enthalpy relaxation of Katsuobushi (dried glassy fish meat) by differential scanning calorimetry and effect of physical aging upon its water sorption ability. Jpn J Food Eng 5:11–19

    Google Scholar 

  • Hogan SA, Famelart MH, O’Callaghan DJ, Schuck P (2010) A novel technique for determining glass–rubber transition in dairy powders. J Food Eng 99:76–82

    Article  CAS  Google Scholar 

  • Inoue C, Suzuki T (2005) Enthalpy relaxation of freeze concentrated sucrose-water glass. Cryobiology 52:83–89

    Article  Google Scholar 

  • Jaya S, Das H (2004) Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. J Food Eng 63:125–134

    Article  Google Scholar 

  • Johari GP, Hallbrucker A, Mayer E (1987) The glass–liquid transition of hyperquenched water. Nature 330:552–553

    Article  CAS  Google Scholar 

  • Kasapis S, Rahman MS, Guizani N, Al-Aamri M (2000) State diagram of temperature vs. date solids obtained from the mature fruit. J Agric Food Chem 48:3779–3784

    Article  CAS  Google Scholar 

  • Kawahara H, Fujii A, Inoue M, Kitao S, Fukuoka J, Obata H (2009) Antifreeze activity of cold acclimated Japanese radish and purification of antifreeze peptide. CryoLetters 30:119–131

    CAS  PubMed  Google Scholar 

  • Kawai K, Hagura Y (2012) Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer–plasticizer systems. Carbohydr Polym 89:836–841

    Article  CAS  Google Scholar 

  • Kawai K, Hagiwara T, Takai R, Suzuki T (2005) Comparative investigation by two type analytical approaches on enthalpy relaxation for glassy glucose, sucrose, maltose and trehalose. Pharm Res 22:490–495

    Article  CAS  Google Scholar 

  • Kawai K, Toh M, Hagura Y (2014) Effect of sugar composition on the water sorption and softening properties of cookie. Food Chem 145:772–776

    Article  CAS  Google Scholar 

  • Khalloufi S, El-Maslouhi Y, Ratti C (2000) Mathematical model for prediction of glass transition temperature of fruit powders. J Food Sci 65:842–848

    Article  CAS  Google Scholar 

  • Kim YJ, Hagiwara T, Kawai K, Suzuki T, Takai R (2003) Kinetic process of enthalpy relaxation of glassy starch and effect of physical aging upon its water vapor permeability property. Carbohydr Polym 53:289–296

    Article  CAS  Google Scholar 

  • Klinmalai P, Shibata M, Hagiwara T (2017) Recrystallization of ice crystals in trehalose solution at isothermal condition. Food Biophys 12:404–411

    Article  Google Scholar 

  • Kurozawa LE, Hubinger MD, Park KJ (2012) Glass transition phenomenon on shrinkage of papaya during convective drying. J Food Eng 108:43–50

    Article  Google Scholar 

  • Lacık I, Krupa I, Stach M, Kučma A, Jurčiová J, Chodák I (2000) Thermal lag and its practical consequence in the dynamic mechanical analysis of polymers. Polym Test 19:755–771

    Article  Google Scholar 

  • Lide DR (2003) CRC handbook of chemistry, physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  • Liu L, Miyawaki O, Nakamura K (1997) Progressive freeze-concentration of model liquid food. Food Sci Technol Int Tokyo 3:348–352

    Article  Google Scholar 

  • Marshall RT, Arbuckle WS (2000) Ice cream. Aspen Publisher, Gaithersburg

    Google Scholar 

  • Martino MN, Zaritzky NE (1988) Ice crystal size modifications during frozen beef storage. J Food Sci 53:1631–1637 1649

    Article  Google Scholar 

  • Martino MN, Zaritzky NE (1989) Ice recrystallization in a model system and in frozen muscle tissue. Cryobiology 26:138–148

    Article  CAS  Google Scholar 

  • Matsuoka S (1992) Relaxation phenomena in polymers. Carl Hanser Verlag, Munich

    Google Scholar 

  • Miller-Livney T, Hartel RW (1997) Ice recrystallization in ice cream: interactions between sweeteners and stabilizers. J Dairy Sci 80:447–456

    Article  CAS  Google Scholar 

  • Miyawaki O, Liu L, Shirai Y, Sakashita S, Kagitani K (2005) Tubular ice system for scale-up of progressive freeze-concentration. J Food Eng 69:113–107

    Article  Google Scholar 

  • Miyawaki O, Omote C, Gunathilake M, Ishisaki K, Miwa S, Tagami A, Kitano S (2016) Integrated system of progressive freeze-concentration combined with partial ice-melting for yield improvement. J Food Eng 184:38–43

    Google Scholar 

  • Moraga G, Martınez-Navarrete N, Chiralt A (2004) Water sorption isotherms and glass transition in strawberries: influence of pretreatment. J Food Eng 62:315–321

    Article  Google Scholar 

  • Moraga G, Martínez-Navarrete N, Chiralt A (2006) Water sorption isotherms and phase transitions in kiwifruit. J Food Eng 72:147–156

    Article  Google Scholar 

  • Moraga G, Talens P, Moraga MJ, Martínez-Navarrete N (2011) Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. J Food Eng 106:212–219

    Article  Google Scholar 

  • Mosquera LH, Moraga G, Martínez-Navarrete N (2010) Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder. J Food Eng 97:72–78

    Article  CAS  Google Scholar 

  • Mosquera LH, Moraga G, Martínez-Navarrete N (2012) Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Res Int 47:201–206

    Article  CAS  Google Scholar 

  • Oikonomopoulou VP, Krokida MK (2012) Structural properties of dried potatoes, mushrooms, and strawberries as a function of freeze-drying pressure. Dry Technol 30:351–361

    Article  CAS  Google Scholar 

  • Palzer S (2005) The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. Chem Eng Sci 60:3959–3968

    Article  CAS  Google Scholar 

  • Payne CR, Labuza TP (2005a) The brittle–ductile transition of an amorphous food system. Dry Technol 23:871–886

    Article  CAS  Google Scholar 

  • Payne CR, Labuza TP (2005b) Correlating perceived crispness intensity to physical changes in an amorphous snack food. Dry Technol 23:887–905

    Article  CAS  Google Scholar 

  • Pelgrom PJM, Schutyser MAI, Boom RM (2013) Thermomechanical morphology of peas and its relation to fracture behavior. Food Bioprocess Technol 6:3317–3325

    Article  CAS  Google Scholar 

  • Pyne A, Surana R, Suryanarayanan R (2003) Enthalpic relaxation in frozen aqueous trehalose solutions. Thermochim Acta 405:225–234

    Article  CAS  Google Scholar 

  • Ramteke RS, Singh NL, Rekha MN, Eipeson WE (1993) Methods for concentration of fruit juices: a critical evaluation. J Food Sci Technol 30:391–402

    Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589–2593

    Article  CAS  Google Scholar 

  • Raymond JA, Wilson P, DeVries AL (1989) Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci U S A 86:881–885

    Article  CAS  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89:49–57

    Article  CAS  Google Scholar 

  • Roos YH (1995) Phase transition in foods. Academic, San Diego

    Google Scholar 

  • Ross KA, Campanella OH, Okos MR (2002) The effect of porosity on glass transition measurement. Int J Food Proc 5:611–628

    Article  CAS  Google Scholar 

  • Sablania SS, Kasapis S, Rahmana MS, Al-Jabria A, Al-Habsi N (2004) Sorption isotherms and the state diagram for evaluating stability criteria of abalone. Food Res Int 37:915–924

    Article  Google Scholar 

  • Sandoval A, Nuñez M, Müller AJ, Valle GD, Lourdin D (2009) Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydr Polym 76:528–534

    Article  CAS  Google Scholar 

  • Sastry S (1999) Supercooled water: going strong or falling apart? Nature 398:467–469

    Article  CAS  Google Scholar 

  • Silva MA, Sobral PJA, Kieckbusch TG (2006) State diagrams of freeze-dried camu-camu (Myrciaria dubia (HBK) McVaugh) pulp with and without maltodextrin addition. J Food Eng 77:426–432

    Article  CAS  Google Scholar 

  • Slade L, Levine H (1994) Water and the glass transition – dependence of the glass transition on composition and chemical structure: special implications for flour functionality in cookie baking. J Food Eng 22:143–188

    Article  Google Scholar 

  • Sobral PJA, Telis VRN, Habitante AMQB, Sereno A (2001) Phase diagram for freeze-dried persimmon. Thermochim Acta 376:83–89

    Article  CAS  Google Scholar 

  • Sonthipermpoon W, Suwonsichon T, Wittaya-areekul S, Wuttijumnong P (2006) Effect of maltodextrin on glass transition temperature and water activity of production banana flake. Kasetsart J (Nat Sci) 40:708–715

    CAS  Google Scholar 

  • Sutton RL, Lips A, Piccirillo G, Sztehlo A (1996) Kinetics of ice recrystallization in aqueous fructose solutions. J Food Sci 61:741–745

    Article  CAS  Google Scholar 

  • Syamaladevi RM, Sablani SS, Tang J, Powers J, Swanson BG (2009) State diagram and water adsorption isotherm of raspberry (Rubus idaeus). J Food Eng 91:460–467

    Article  CAS  Google Scholar 

  • Telis VRN (2006) Sorption isotherm, glass transitions and state diagram for freeze-dried plum skin and pulp. Food Sci Technol Int 12:181–187

    Article  Google Scholar 

  • Telis VRN, Martínez-Navarrete N (2009) Collapse and color changes in grapefruit juice powder as affected by water activity, glass transition, and addition of carbohydrate polymers. Food Biophys 4:83–93

    Article  Google Scholar 

  • Thuc TT, Fukai S, Truong V, Bhandari B (2010) Measurement of glass-rubber transition temperature of rice by thermal mechanical compression test (TMCT). Int J Food Prop 13:176–183

    Article  Google Scholar 

  • Tiemblo P, Guzman J, Riande E, Mijangos C, Reinecke H (2002) Effect of physical aging on the gas transport properties of PVC and PVC modified with pyridine groups. Polymer 42:4817–4823

    Article  Google Scholar 

  • Urbani R, Sussich F, Prejac S, Cesàro A (1997) Enthalpy relaxation and glass transition behaviour of sucrose by static and dynamic DSC. Thermochim Acta 304–305:359–367

    Article  Google Scholar 

  • van Donkelaar LH, Martinez JT, Frijters H, Noordman TR, Boom RM, van der Goot AJ (2015) Glass transitions of barley starch and protein in the endosperm and isolated from. Food Res Int 72:241–246

    Article  Google Scholar 

  • Vásquez C, Díaz-Calderón P, Enrione J, Matiacevich S (2013) State diagram, sorption isotherm and color of blueberries as a function of water content. Thermochim Acta 570:8–15

    Article  Google Scholar 

  • Wang H, Zhang S, Chen G (2008) Glass transition and state diagram for fresh and freeze-dried Chinese gooseberry. J Food Eng 84:307–312

    Article  Google Scholar 

  • Yoshida H (1995) Relaxation between enthalpy relaxation and dynamic mechanical relaxation of engineering plastics. Thermochim Acta 266:119–127

    Article  CAS  Google Scholar 

  • Young FE (1957) D-glucose–water phase diagram. J Phys Chem 61:616–619

    Article  CAS  Google Scholar 

  • Young FE, Jones FT (1949) Sucrose hydrates. J Phys Chem 53:1334–1350

    Article  CAS  Google Scholar 

  • Young FE, Jones FT, Lewis HJ (1952) D-fructose–water phase diagram. J Phys Chem 56:1093–1096

    Article  CAS  Google Scholar 

  • Zotarelli MF, da Silva VM, Durigon A, Hubinger MD, Laurindo JB (2017) Production of mango powder by spray drying and cast-tape drying. Powder Technol 305:447–454

    Article  CAS  Google Scholar 

  • Zou K, Teng J, Huang L, Dai X, Wei B (2013) Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. Food Sci Technol 51:253–259

    CAS  Google Scholar 

Download references

Acknowledgments

K. Kawai gratefully acknowledges financial support from JSPS KAKENHI: Grant-in-Aid for Young Scientists B (24780129) and Grant-in-Aid for Scientific Research C (15K07453). T. Hagiwara acknowledges funding from the Iwatani Naoji Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kawai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawai, K., Hagiwara, T. (2018). Control of Physical Changes in Food Products. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_21

Download citation

Publish with us

Policies and ethics