Skip to main content

Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species

  • Chapter
  • First Online:
Survival Strategies in Extreme Cold and Desiccation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

Environmental stresses can reduce crop yield and quality considerably. Plants protect cell metabolism in response to abiotic stresses at all stages of their life cycle, including seed production. As the production of vigorous seeds is important to both yield and crop growth, we analyzed causes of yield loss and reduced grain quality in staple crops exposed to environmental stresses such as drought and temperature extremes, with a focus on the remobilization of nutrients and water status during seed filling. Because water is one of the factors that limit seed development, seeds must have mechanisms that allow them to withstand water loss during seed maturation. In addition, analysis of the effects of reactive oxygen species (ROS) on transcription regulation and signaling should help to elucidate the regulation of seed dormancy and germination. In this review, we focus on nutrient remobilization, water mobility, plant hormones (gibberellins, abscisic acid, and ethylene), and ROS in sink and source organs and describe how rice, wheat, barley, soybean, and cowpea plants control seed maturation and germination under environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AQP:

Aquaporin

CAT:

Catalase

CmACS1 :

1-Aminocyclopropane-1-carboxylate synthase

DAF:

Days after flowering

GAMyb:

GA Myb transcription factor

GAs:

Gibberellins

GSS:

Green stem syndrome

H2O2 :

Hydrogen peroxide

LEA:

Late embryogenesis abundant

MRI:

NMR imaging

NMR:

Nuclear magnetic resonance

PHS:

Preharvest sprouting

PIP:

Plasma membrane intrinsic protein

PK:

Protein kinase

PKABA:

ABA-responsive protein kinase

ROS:

Reactive oxygen species

SUT1:

Sucrose transporter

T 1 :

NMR spin-lattice relaxation time

T 2 :

NMR spin-spin relaxation time

TIP:

Tonoplast intrinsic protein

References

  • Abayomi YA, Afolabi ES, Aderolu MA (2000) Effects of water stress at different stages on growth, grain yield and seed quality of cowpea genotypes. NISEB J 1:87–97

    Google Scholar 

  • Adebooye OC, Singh V (2008) Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp). Inno Food Sci Emerg Technol 9:92–100

    Article  CAS  Google Scholar 

  • Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant Cell Environ 34:980–993

    Article  CAS  PubMed  Google Scholar 

  • Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    Article  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Come D (1998) Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiol Plant 104:646–652

    Article  CAS  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814

    Article  CAS  PubMed  Google Scholar 

  • Barba-Espín G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernandez JA (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981–994

    Article  PubMed  CAS  Google Scholar 

  • Battaglia M, Covarrubias AA (2013) Late Embryogenesis Abundant (LEA) proteins in legumes. Front Plant Sci 4:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6:e0113

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazin J, Batlla D, Dussert S, Maarouf-Bouteau HE, Bailly C (2011) Role of relative humidity, temperature, and water status in dormancy alleviation of sunflower seeds during dry after-ripening. J Exp Bot 62:627–640

    Article  CAS  PubMed  Google Scholar 

  • Becker C, Fischer J, Nong VH, Munitz K (1994) PCR cloning and expression analysis of cDNAs encoding cysteine proteinases from germinating seeds of Vicia sativa L. Plant Mol Biol 26:1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Bellaloui N, Hu Y, Mengistu A, Kassem MA, Abel CA (2013) Effects of foliar boron application on seed composition, cell wall boron, and seed 15δN and 13δC isotopes in water-stressed soybean plants. Front Plant Sci 4:270

    PubMed  PubMed Central  Google Scholar 

  • Béré E, Lahbib K, Merceron B, Fleurat-Lessard P, Boughanmi NG (2017) α-TIP aquaporin distribution and size tonoplast variation in storage cells of Vicia faba cotyledons at seed maturation and germination stages. J Plant Physiol 216:145–151

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Schuurink R, Jones RL (1997) Hormonal signaling in cereal aleurone. J Exp Bot 48:1337–1356

    Article  CAS  Google Scholar 

  • Bewley D (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York. https://doi.org/10.1007/978-1-4899-1002-8

    Book  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (eds) (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York

    Google Scholar 

  • Brevedan RE, Egli DB (2003) Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci 43:2083–2088

    Article  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  CAS  PubMed  Google Scholar 

  • Buitink J, Leprince O (2008) Intracellular glasses and seed survival in the dry state. C R Biol 331:788–795

    Article  CAS  PubMed  Google Scholar 

  • Buitink J, Leger JJ, Guisle I, Vu BL, Wuillème S, Lamirault G, Bars AL, Meur NL, Becker A, Küster H, Leprince O (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J 47:735–750

    Article  CAS  PubMed  Google Scholar 

  • Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • CGIAR (2017) http://www.cgiar.org/our-strategy/crop-factsheets/cowpea/. Accessed 17 Nov 2017

  • Chaumont F, Tyerman SD (2017) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  Google Scholar 

  • Chien CT, Lin TP (1994) Mechanism of hydrogen peroxide in improving the germination of Cinnamomum camphora seed. Seed Sci Technol 22:231–236

    Google Scholar 

  • Cho MJ, Wong JH, Marx C, Jiang W, Lemaux PG, Buchanan BB (1999) Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Proc Natl Acad Sci U S A 96:14641–14646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y (2006) Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot 57:2421–2434

    Article  CAS  PubMed  Google Scholar 

  • Ciampitti IA (2016) Growth and development. In: Soybean production handbook. Kansas State University, p 48 https://www.bookstore.ksre.ksu.edu/pubs/c449.pdf. Accessed 24 Nov 2017

  • Citadin CT, Ibrahim AB, Aragão FJL (2011) Genetic engineering in cowpea (Vigna unguiculata): history, status and prospects. GM Crops 2:144–149

    Article  PubMed  Google Scholar 

  • Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Haeze W, De Rycke R, Mathis R et al (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci USA 100:11789–11794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    Article  CAS  PubMed  Google Scholar 

  • Delahaie J, Hundertmark M, Bove J, Leprince O, Rogniaux H, Buitink J (2013) LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J Exp Bot 64:4559–4573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devic M, Roscoe T (2016) Seed maturation: simplification of control networks in plants. Plant Sci 252:335–346

    Article  CAS  PubMed  Google Scholar 

  • Dornbos D, Mullen R (1992) Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J Am Oil Chem Soc 69:228–231

    Article  CAS  Google Scholar 

  • Du YL, Wang ZY, Fan JW, Turner NC, He J, Wang T, Li FM (2013) Exogenous abscisic acid reduces water loss and improves antioxidant defence, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. Funct Plant Biol 40:494–506

    Article  CAS  PubMed  Google Scholar 

  • Eck HV, Mathers AC, Musick JT (1987) Plant water stress at various growth stages and growth and yield of soybeans. Field Crop Res 17:1–16

    Article  Google Scholar 

  • Egashira C, Yamauchi T, Miyamoto Y, Yuasa T, Ishibashi Y, Iwaya-Inoue M (2016) Physiological responses of cowpea (Vigna unguiculata (L.) Walp) to drought stress during the pod-filling stage. Cryobiol Cryotechnol 62:69–75

    Google Scholar 

  • Egashira C, Miura N, Yamauchi T, Miyamoto Y, Hashiguchi Y, Matsushima Y, Yuasa T, Ishibashi Y, Iwaya-Inoue M (2017) Effects of drought stress on water-related parameters and photoassimilate translocation in cowpea (Vigna unguiculata (l.) walp) at pod-filling stage. Proceedings of AFELiSA 2017 172

    Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Chu C (2008) Abscisic acid and the pre-harvest sprouting in cereals. Plant Signal Behav 3:1046–1048

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2017) Food outlook 2017. Biannual report on global food markets. http://www.fao.org/3/a-i7343e.pdf. Accessed 9 Jan 2018

  • Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot 67:567–591

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Fontaine O, Huault C, Pavis N, Billard JP (1994) Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant Physiol Biochem 2:677–683

    Google Scholar 

  • Frederick JR, Camp CR, Bauer PJ (2001) Drought stress effects on branches and main stem seed yield and yield components of determinate soybean. Crop Sci 41:759–763

    Article  Google Scholar 

  • Funaba M, Ishibashi Y, Molla AH, Iwanami K, Iwaya-Inoue M (2006) Influence of low/high temperature on water status on developing and maturing rice grains. Plant Prod Sci 9:347–354

    Article  Google Scholar 

  • Gangola MP, Jaiswal S, Kannan U, Gaur PM, Båga M, Chibbar RN (2016) Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds. Phytochemistry 125:88–98

    Article  CAS  PubMed  Google Scholar 

  • Garnczarska M, Zalewski T, Kempka M (2007) Changes in water status and water distribution in maturing lupin seeds studied by MR imaging and NMR spectroscopy. J Exp Bot 58:3961–3969

    Article  CAS  PubMed  Google Scholar 

  • Gattolin S, Sorieul M, Frigerio L (2011) Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant 4:180–189

    Article  CAS  PubMed  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S (1996) Calcium-dependent and -independent signal transduction in the barley aleurone. Plant Cell 8:2193–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, António C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubler F, Millar A, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Zhang H, Li Y, Ren J, Wang X, Niu H, Yin J (2011) Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti–trx s gene. PLoS One 6:e22255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454

    Article  Google Scholar 

  • Hilhorst HWM, Finch-Savage WE, Buitink J, Bolingue W, Leubner-Metzger G (2010) Dormancy in plant seeds. In: Lubzens E, Cerda J, Clark M (eds) Topics in current genetics volume 21. Dormancy and resistance in harsh environments. Springer, Berlin, pp 43–67

    Chapter  Google Scholar 

  • Hill CB, Bowen CR, Hartman GL (2013) Effect of fungicide application and cultivar on soybean green stem disorder. Plant Dis 97:1212–1220

    Article  PubMed  Google Scholar 

  • Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor App Genet 122:1561–1576

    Article  CAS  Google Scholar 

  • Hite DR, Auh C, Scandalios JG (1999) Catalase activity and hydrogen peroxide levels are inversely correlated in maize scutella during seed germination. Redox Rep 4:29–34

    Article  CAS  PubMed  Google Scholar 

  • Hobbs HA, Hill CB, Grau CR, Koval NC, Wang Y, Pedersen WL, Domier LL, Hartman GL (2006) Green stem disorder of soybean. Plant Dis 90:513–518

    Article  PubMed  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Horigane AK, Engelaar WMHG, Maruyama S, Yoshida M, Okubo A, Nagata T (2001) Visualisation of moisture distribution during development of rice caryopses (Oryza sativa L.) by nuclear magnetic resonance microimaging. Cereal Sci 33:105–114

    Article  Google Scholar 

  • Imabayashi S, Ogata T (1998) Preharvest sprouting of extremely early-maturing rice cultivars with high palatability and its relation to falling number value. Jpn J Crop Sci 67:236–240

    Article  Google Scholar 

  • Imamura M, Egashira C, Ishibashi Y, Iwaya-Inoue M (2010) Characteristics of water-related parameters of roots, leaves and hypocotyls in cowpea under drought stress compared with common bean. Cryobiol Cryotechnol 56:83–90

    Google Scholar 

  • Ishibashi Y, Iwaya-Inoue M (2006) Ascorbic acid suppresses germination and dynamic states of water in wheat seeds. Plant Prod Sci 9:172–175

    Article  CAS  Google Scholar 

  • Ishibashi Y, Yamamoto K, Tawaratsumida T, Yuasa T, Iwaya-Inoue M (2008) Hydrogen peroxide scavenging regulates germination ability during wheat (Triticum aestivum L.) seed maturation. Plant Sig Behav 3:183–188

    Article  Google Scholar 

  • Ishibashi Y, Tawaratsumida T, Zheng SH, Yuasa T, Iwaya-Inoue M (2010) NADPH oxidases act as key enzyme on germination and seedling growth in barley (Hordeum vulgare L.). Plant Prod Sci 13:45–52

    Article  CAS  Google Scholar 

  • Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng SH, Yuasa T, Iwaya-Inoue M (2012) Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol 158:1705–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2013) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot 111:95–102

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi Y, Okamura K, Phan T, Miyazaki M, Yuasa T, Iwaya-Inoue M (2014) Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environ Exp Bot 97:49–54

    Article  CAS  Google Scholar 

  • Ishibashi Y, Kasa S, Sakamoto M, Aoki N, Kai K, Yuasa T, Hanada A, Yamaguchi S, Iwaya-Inoue M (2015) A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination. PLoS One 10:e 0143173

    Article  CAS  Google Scholar 

  • Ishibashi Y, Aoki N, Kasa S, Sakamoto M, Kai K, Tomokiyo R, Watabe G, Yuasa T, Iwaya-Inoue M (2017) The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front Plant Sci 8:275

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida N, Koizumi M, Kano H (2000) The NMR microscope: a unique and promising tool for plant science. Ann Bot 86:259–278

    Article  CAS  Google Scholar 

  • Ishimaru T, Horigane AK, Ida M, Iwasawa N, San-oh YA, Nakazono M, Nishizawa NK, Masumura T, Kondo M, Yoshida M (2009) Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. J Cereal Sci 50:166–174

    Article  CAS  Google Scholar 

  • Islam MM, Ishibashi Y, Nakagawa ACS, Tomita Y, Zhao X, Iwaya-Inoue M, Arima S, Zheng SH (2017) Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Acta Physiol Plant 39:42

    Article  CAS  Google Scholar 

  • Iturriaga G (2008) The LEA proteins and trehalose loving couple: a step forward in anhydrobiotic engineering. Biochem J 410:e1–e2

    Article  CAS  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaya-Inoue M, Kumamoto Y, Watanabe G (2001) Ratio changes in Lorentzian/Gaussian curves determined by 1H-NMR reflect seed dehydration. Cryobiol Cryotechnol 47:51–58

    Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JT, Mullet JE (1995) A salt-inducible and dehydration-inducible pea gene, Cyp15a, encodes a cell wall protein with sequence similarity to cysteine proteases. Plant Mol Biol 28:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Kaneko A, Noguchi E, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2013) Sucrose starvation signal mediates induction of autophagy- and amino acid catabolism-related genes in cowpea seedling. Am J Plant Sci 4:647–653

    Article  CAS  Google Scholar 

  • Kaneko K, Sasaki M, Kuribayashi N, Suzuki H, Sasuga Y, Shiraya T, Inomata T, Itoh K, Baslam M, Mitsui T (2016) Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice 9:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashiwakura Y, Kobayashi D, Jikumaru Y, Takebayashi Y, Nambara E, Seo M, Kamiya Y, Kushiro T, Kawakami N (2016) Highly sprouting-tolerant wheat grain exhibits extreme dormancy and cold imbibition-resistant accumulation of abscisic acid. Plant Cell Physiol 57:715–732

    Article  CAS  PubMed  Google Scholar 

  • Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kockenberger W, Pope JM, Xia Y, Jeffrey KR, Komor E, Callaghan PT (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201:53–63

    Article  Google Scholar 

  • Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encode distinct drought inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175–182

    Article  CAS  PubMed  Google Scholar 

  • Krishnan P, Singh R, Verma APS, Joshi DK, Singh S (2014) Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions. Biochem Biophys Res Commun 444:485–490

    Article  CAS  PubMed  Google Scholar 

  • Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Lariguet P, Ranocha P, De Meyer M, Barbier O, Penel C, Dunand C (2013) Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta 238:381–395

    Article  CAS  PubMed  Google Scholar 

  • Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leprince O, Walters-Vertucci C (1995) A calorimetric study of the glass transition behaviors in axes of bean seeds with relevance to storage stability. Plant Physiol 109:1471–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leprince O, Pellizzaro A, Berriri S, Buitink J (2017) Late seed maturation: drying without dying. J Exp Bot 68:827–841

    CAS  PubMed  Google Scholar 

  • Li YC, Ren J, Cho MJ, Zhou SM, Kim YB, Guo HX, Wong JH, Niu HB, Kim HK, Morigasaki S, Lemaux PG, Frick OL, Yin J, Buchanan BB (2009) The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds. Mol Plant 2:430–441

    Article  CAS  PubMed  Google Scholar 

  • Ling H, Zeng X, Guo S (2017) Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci Rep 2017:1–9

    Google Scholar 

  • Lisle AJ, Martin M, Fitzgerald MA (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem J 77:627–632

    Article  CAS  Google Scholar 

  • Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Ding F, Hao F, Yu M, Lei H, Wu X, Zhao Z, Guo H, Yin J, Wang Y, Tang H (2016) Reprogramming of seed metabolism facilitates pre-harvest sprouting resistance of wheat. Sci Rep 6:20593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845–859

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Marsolais F, Bykova NV, Igamberdiev AU (2016) Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination. Front Plant Sci 7:138

    PubMed  PubMed Central  Google Scholar 

  • Manfre AJ, LaHatte GA, Climer CR, Marcotte WR Jr (2009) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol 50:243–253

    Article  CAS  PubMed  Google Scholar 

  • Mao Z, Sun W (2015) Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. J Exp Bot 66:4781–4794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mares DJ, Mrva K (2014) Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Boursiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Melkus G, Rolletschek H, Fuchs J, Radchuk V, Grafahrend-Belau E, Sreenivasulu N, Rutten T, Weier D, Heinzel N, Schreiber F, Altmann T, Jakob PM, Borisjuk L (2011) Dynamic 13C/1H NMR imaging uncovers sugar allocation in the living seed. Plant Biotechnol J 9:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • MEXT (2017) Standard tables of food composition in Japan -2015- Seventh Revised Version http://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/sdetail01/sdetail01/1385122.htm. Accessed 9 Jan 2018

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Araki M, Okamura K, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2013) Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. J Plant Physiol 170:1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Yonemaru J, Takanashi J (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95:695–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2008) Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci 4:541–552

    Article  CAS  Google Scholar 

  • Murase N, Watanabe T (1989) Nuclear magnetic relaxation studies of the compartmentalized water in crosslinked polymer gels. Magn Reson Med 9:1–7

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa ACS, Itoyama H, Ariyoshi Y, Ario N, Tomita Y, Kondo Y, Iwaya-Inoue M, Ishibashi Y (2018) Drought stress during soybean seed filling affects storage compounds through regulation of lipid and protein metabolism. Acta Physiol. Plant. 40:111

    Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67

    Article  CAS  Google Scholar 

  • Nang MPSH, Tanigawa T, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2008) Relationship of water content and dry weight to autophagy-related gene expression in maturing seeds of soybean. Cryobiol Cryotechnol 54:135–142

    Google Scholar 

  • Nang MPSH, Yuasa T, Ishibashi Y, Tanigawa H, Okuda M, Zheng S-H, Iwaya-Inoue M (2011) Leaf senescence of soybean at reproductive stage is associated with induction of autophagy-related genes, GmATG8c, GmATG8i and GmATG4. Plant Prod Sci 14:141–147

    Article  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination – still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753

    Article  Google Scholar 

  • Ogawa K, Iwabuchi M (2001) A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol 42:286–291

    Article  CAS  PubMed  Google Scholar 

  • Ogbonnaya CI, Sarr B, Brou C, Diouf O, Diop NN, Roy MH (2003) Selection of cowpea genotypes in hydroponics, pots and field for drought tolerance. Crop Sci 43:1114–1120

    Article  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism of seed dormancy alleviation. Plant J 50:452–465

    Article  CAS  PubMed  Google Scholar 

  • Osonubi O (1985) Responses of cowpeas (Vigna unguiculata (L.) Walp.) to progressive soil drought. Oecologia 66:554–557

    Article  CAS  PubMed  Google Scholar 

  • Pate JS, Peoples MB, Atkins CA (1983) Post-anthesis economy of carbon in a cultivar of cowpea. J Exp Bot 34:544–562

    Article  CAS  Google Scholar 

  • Phan TTT, Ishibashi Y, Miyazaki M, Tran HT, Okamura K, Tanaka S, Nakamura J, Yuasa T, Iwaya-Inoue M (2013) High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. J Agron Crop Sci 199:178–188

    Article  CAS  Google Scholar 

  • Pielot R, Kohl S, Manz B, Rutten T, Weier D, Tarkowská D, Rolčík J, Strnad M, Volke F, Weber H, Weschke W (2015) Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling. J Exp Bot 66:6927–6943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrzak LN, Frégeau-Reid J, Chatson B, Blackwell B (2002) Observations on water distribution in soybean seed during hydration processes using nuclear magnetic resonance imaging. Can J Plant Sci 82:513–519

    Article  Google Scholar 

  • Pottier FM, Masclaux-Daubresse C, Yoshimoto K, Thomine S (2014) Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds. Front Plant Sci 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Pu Y, Hallac B, Ragauskas AJ (2013) Plant biomass characterization: application of solution- and solid-state NMR spectroscopy. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 1st edn. Wiley, Chichester

    Chapter  Google Scholar 

  • Puntarulo S, Galleano M, Sanchez RA, Boveris A (1991) Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochim Biophys Acta 1074:277–283

    Article  CAS  PubMed  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Weeda S, Li H, Whitehead B, Guo Y, Atalay A, Parry J (2012) Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Cl− ions from aerial tissues. Plant Cell Rep 31:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Ren C, Liu J, Gong Q (2014) Functions of autophagy in plant carbon and nitrogen metabolism. Front Plant Sci 5:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Resurreccion AP, Hara T, Juliano BO, Yoshida S (1977) Effect of temperature during ripening on grain quality of rice. Soil Sci Plant Nutr 23:109–112

    Article  Google Scholar 

  • Righetti K, Vu JL, Pelletier S, Vu BL, Glaab E, Lalanne D, Pasha A, Patel RV, Provart NJ, Verdier J, Leprince O, Buitink J (2015) Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. Plant Cell 27:2692–2708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez MV, Barrero JM, Corbineau F, Gubler F, Benech-Arnold RL (2015) Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Sci Res 25:99–119

    Article  CAS  Google Scholar 

  • Rolletschek H, Melkus G, Grafahrend-Belau E, Fuch J, Heinzel N, Schreiber F, Jakob PM, Borisjuk L (2011) Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. Plant Cell 23:3041–3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolletschek H, Grafahrend-Belau E, Munz E, Radchuk V, Kartäusch R, Tschiersch H, Melkus G, Schreiber F, Jakob PM, Borisjuk L (2015) Metabolic architecture of the cereal grain and its relevance to maximize carbon use efficiency. Plant Physiol 169:1698–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai M, Furuki T, Akao K, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci U S A 105:5093–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  CAS  PubMed  Google Scholar 

  • Sato J, Shiraiwa T, Sakashita M, Tsujimoto Y, Yoshida R (2007) The occurrence of delayed stem senescence in relation to trans-zeatin riboside level in the xylem exudate in soybeans grown under excess-wet and drought soil conditions. Plant Prod Sci 10:460–467

    Article  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuurmans JAMJ, van Dongen JT, Rutjens BPW, Boonman A, Pieterse CMJ, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol 53:655–667

    Article  Google Scholar 

  • Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, Uauy C (2016) The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J Exp Bot 67:4169–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  CAS  PubMed  Google Scholar 

  • Simsek S, Ohm JB, Lu H, Rugg M, William (2014) Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J Sci Food 94:205–212

    Article  CAS  Google Scholar 

  • Sinclair TR, Messina CD, Beatty A, Samples M (2009) Assessment across the United States of the benefits of altered soybean drought traits. Agron J 102:475–482

    Article  Google Scholar 

  • Song YJ, Joo JH, Ryu HY, Lee JS, Bae YS, Nam KH (2007) Reactive oxygen species mediate IAA-induced ethylene production in mungbean (Vigna radiata L.) hypocotyls. J Plant Biol 50:18–23

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Butardo VM Jr, Misra G, Cuevas RP, Anacleto R, Kavi Kishor PB (2015) Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot 66:1737–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung JM, Jeng T (1994) Lipid peroxidation and peroxide-scavenging enzymes associated with accelerated aging of peanut seed. Physiol Plant 91:51–55

    Article  CAS  Google Scholar 

  • Suriyasak C, Harano K, Tanamachi K, Matsuo K, Tamada A, Iwaya-Inoue M, Ishibashi Y (2017) Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness. J Plant Physiol 216:52–57

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:1–9

    Article  CAS  Google Scholar 

  • Takahashi H, Rai M, Kitagawa T, Morita S, Masumura T, Tanaka K (2004) Differential localization of tonoplast intrinsic proteins on the membrane of protein body type II and aleurone grain in rice seeds. Biosci Biotechnol Biochem 68:1728–1736

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Onishi R, Miyazaki M, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2009) Changes in NMR relaxation times of rice grains, kernel quality and physicochemical properties in relation to nucellar epidermis in heat-tolerant and -sensitive rice cultivars at the early ripening stage. Plant Prod Sci 12:185–192

    Article  CAS  Google Scholar 

  • Tanaka M, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2012) Analysis of pre-harvest sprouting during seed maturation using 1H-NMR. Cryobiol Cryotechnol 58:87–91

    Google Scholar 

  • Tanaka S, Ario N, Nakagawa ACS, Tomita Y, Murayama N, Taniguchi T, Hamaoka N, Iwaya-Inoue M, Ishibashi (2017) Effects of light quality on pod elongation in soybean (Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.). Plant Sig Behav 12:e1327495

    Article  CAS  Google Scholar 

  • Tanamachi K, Miyazaki M, Matsuo K, Suriyasak C, Tamada A, Matsuyama K, Iwaya-Inoue M, Ishibashi Y (2016) Differential responses to high temperature during maturation in heat-stress-tolerant cultivars of Japonica rice. Plant Prod Sci 19:300–308

    Article  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J 32:419–431

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann J, Schlereth A, Müntz K (2001) Differential tissue-specific expression of cysteine proteinases forms the basis for the fine-tuned mobilization of storage globulin during and after germination in legume seeds. Planta 212:728–738

    Article  CAS  PubMed  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Topics in current genetics. Volume 21 dormancy and resistance in harsh environments. Springer, Berlin, pp 91–108

    Chapter  Google Scholar 

  • van Duivenbooden N, Abdoussalam S, Mohamed AB (2002) Impact of climate change on agricultural production in the Sahel – part 2. Case study for groundnut and cowpea in Niger. Clim Chang 54:349–368

    Article  Google Scholar 

  • Wada H, Masumoto-Kubo C, Gholipour Y, Nonami H, Tanaka F, Erra-Balsells R, Tsutsumi K, Hiraoka K, Satoshi Morita S (2014) Rice chalky ring formation caused by temporal reduction in starch biosynthesis during osmotic adjustment under Foehn-induced dry wind. PLoS One 9:e110374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in gene bank: species characteristics. Seed Sci Res 15:1–20

    Article  CAS  Google Scholar 

  • Watanabe T, Seo S, Sakai S (2001) Wound-induced expression of a gene for 1-aminocyclopropane-1-carboxylate synthase and ethylene production are regulated by both reactive oxygen species and jasmonic acid in Cucurbita maxima. Plant Physiol Biochem 39:121–127

    Article  CAS  Google Scholar 

  • Watanabe G, Ishibashi Y, Iwaya-Inoue M (2015) Ontogenetic changes of the water status and accumulated soluble compounds in developing and ripening mume (Prunus mume) fruit measured by 1H-NMR analysis. Adv Hortic Sci 29:3–12

    Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First of the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Weng L, Ziaei S, Elliott GD (2016) Effects of water on structure and dynamics of trehalose glasses at low water contents and its relationship to preservation outcomes. Sci Rep 6:28795

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe J, Bryant G, Koster K (2002) What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23:157–166

    PubMed  Google Scholar 

  • Wong JH, Kim YB, Ren PH, Cai N, Cho MJ, Hedden P, Lemaux PG, Buchanan BB (2002) Transgenic barley grain overexpressing thioredoxin shows evidence that the starchy endosperm communicates with the embryo and the aleurone. Proc Natl Acad Sci U S A 99:16325–16330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia LQ, Yang Y, Ma YZ, Chen XM, He ZH, Roder MS, Jones HD, Shewry PR (2009) What can the Viviparous-1 gene tell us about wheat pre-harvest sprouting? Euphytica 168:385–394

    Article  CAS  Google Scholar 

  • Xia T, Xiao D, Liu D, Chai W, Gong Q, Wang NN (2012) Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS One 7:e37217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye NH, Zhu GH, Liu YG, Zhang AY, Li YX, Liu R, Shi L, Jia LG, Zhang JH (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63:1809–1822

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen B, Xu Z, Shi Z, Chen S, Huang X, Chen J, Wang X (2014) Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J Exp Bot 65:3189–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SH, Maeda A, Fukuyama M (2003) Lag period of pod growth in soybean. Plant Prod Sci 6:243–246

    Article  Google Scholar 

  • Zhou Y, Chu P, Chen H, Li Y, Liu J, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012) Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. Planta 235:523–537

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Tang H, Cheng MP, Dankwa KO, Chen ZX, Li ZY, Gao S, Liu YX, Jiang QT, Lan XJ et al (2017) Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Front Plant Sci 8:401

    PubMed  PubMed Central  Google Scholar 

  • Zinsmeister J, Lalanne D, Terrasson E, Chatelain E, Vandecasteele C, Vu BL, Dubois-Laurent C, Geoffriau E, Signor CL, Dalmais M, Gutbrod K, Dörmann P, Gallardo K, Bendahmane A, Buitink J, Leprince O (2016) ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell 28:2735–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grants Numbers JP16H04867 and JP16K14839 to M.I. I. and JP24780014 and JP16H06183 to Y.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushi Ishibashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishibashi, Y., Yuasa, T., Iwaya-Inoue, M. (2018). Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_13

Download citation

Publish with us

Policies and ethics