Skip to main content

Bioremediation of Contaminants

  • Chapter
  • First Online:
Phytobiont and Ecosystem Restitution

Abstract

The idea of bioremediation is with the nature itself. Owing to contamination in a particular region, some organisms may die; growth of few others might on the contaminants by metabolizing it. Bioremediation would thrive well on the contaminants by metabolizing it. Bioremediation would involve identification of such organisms and fostering their growth, naturally or by inoculation, so as to breakdown the contaminants into less harmful metabolites. This technology being cheaper and nature friendly is certainly a technology for the future. But, like other technologies, this too is not a panacea to all the maladies of environmental contaminants; toxic metals like cadmium obliterate complete flora and fauna of the contaminated area, and hence, it is not possible to use biological agents to treat them. Microbes require oxygen as an electron acceptor hence in aqueous phase; oxygen concentration below 1 mg/1 restricts the process of bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebusoye SA, Hori MO, Amund OO, Teniola OD, Olatope S (2007) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23(8):1149–1159

    Article  CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegrad 35(1):317–327

    Article  CAS  Google Scholar 

  • Bartha R, Bossert I (1984) The treatment and disposal of petroleum wastes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 553–578

    Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89(1):158–168

    Article  CAS  Google Scholar 

  • Boguslawska-Was E, Dabrowski W (2001) The seasonal variability of yeasts and yeast like organisms in water and bottom sediment of the szczecin lagoon. Int J Hyg Environ Health 203(5):451–458

    Article  CAS  Google Scholar 

  • Brooijmans R, Pastink M, Siezen R (2009) Hydrocarbon degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587–592

    Article  CAS  Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeterior Biodegrad 62(3):274–280

    Article  CAS  Google Scholar 

  • Chaillan F, Le Fleche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):887–895

    Article  Google Scholar 

  • Cheong HK, Ha M, Lee LS, Kwon H, Ha EH, Hong YC, Lee SM (2011) Hebei spirit oil spill exposure and subjective symptoms in residents participating in clean-up activities. Environ Health and Toxicol 26:e2011007

    Article  Google Scholar 

  • Cooney JJ (1984) The fate of petroleum pollutants in fresh water ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 399–434

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810, 13 p

    Google Scholar 

  • De Oliveira NC, Rodrigues AA, Alves MIR, Antoniosi Filho NR, Sadoyama G, Vieira JDG (2012) Endophytic bacteria with potential for bioremediation of petroleum hydrocarbons and derivatives. Afr J Biotechnol 71(72):2977–2984

    Google Scholar 

  • Floodgate G (1984) In: Atlas RM (ed) The fate of petroleum in marine ecosystems in petroleum microbiology. Macmillion, New York, pp 355–398

    Google Scholar 

  • Green C, Hoffnagle A (2004) Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Hambrick GA, DeLaune RD, Patrick W (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40(2):365–369

    Google Scholar 

  • Janjua N, Kasi P, Nawaz H, Farooqui S, Khuwaia U (2006) Acute health effects of the tasman spirit oil spill on residents of karachi. Pak BMC Public Health 6(1):84–90

    Article  Google Scholar 

  • Jones DM, Douglas AG, Parkes RJ, Taylor J, Giger W, Schaffner C (1983) The recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine sediments. Mar Pollut Bull 14(3):103–108

    Article  CAS  Google Scholar 

  • Kapley A, Purohit HJ, Chhatre S, Shanker R, Chakrabati T, Khanna P (1999) Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium. Bioresour Technol 67(31):241–245

    Article  CAS  Google Scholar 

  • Kulichevskaya I, lekhina E, Borzenkov I, Zvyagintseva I, Belyaev S (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 60(3):596–601

    Google Scholar 

  • Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN (1992) Streptomyces albiaxalis sp. nov; a new petroleum hydrocarbon degrading species of thermos and halotolerant Streptomyces. Microbiology 61:62–67

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons RA, Temple J, Evans D, Fone DL, Palmer SR (1999) Acute health effects of the sea empress oil spill. J Epidemiol Community Health 53(5):306–310

    Article  CAS  Google Scholar 

  • Patrick W Jr, DeLaune R (1977) Chemical and biological redox systems affecting nutrient availability in the coastal wetlands. Geosci Man 18(13):137–141

    CAS  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas Aeruginosa SP4 isolated from petroleum- contaminated soil. Bioresour Technol 99(6):1589–1595

    Article  CAS  Google Scholar 

  • Rahman K, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat I (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with Rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168

    Google Scholar 

  • Rhaman KSM, Rahman TJ, Banat IM, Lord R Street G (2007) Bioremediation of petroleum sludge using bacterial consortium with biosurfactant. In: Singh SN, Tripathi RD (Eds), Environmental bioremediation technologies. Springer, Berlin, pp 391–408

    Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136(1):187–195

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, New Jersey

    Book  Google Scholar 

  • Vaccari DA, Strom PF, Alleman JE (2006) Environmental biology for engineers and scientists. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaki, M.S., Abdel Zaher, M.F. (2018). Bioremediation of Contaminants. In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_6

Download citation

Publish with us

Policies and ethics