Skip to main content

Bioremediation of Textile Dyes: Appraisal of Conventional and Biological Approaches

  • Chapter
  • First Online:
Phytobiont and Ecosystem Restitution

Abstract

The world is facing numerous environmental changes and challenges, which include generation of huge amounts of wastewater owing to several man-made activities. Use of man-made dyes has increased in the clothing and textile industries because of their bright colors and cost effectiveness in manufacturing. On the other hand, the use of natural dyes is not cost effective, and their preparation is a cumbersome process. Therefore, people are using synthetic colors and textile dye industries are producing huge volumes of wastewater, creating aquatic pollution all over the globe. Man-made dyes or imitation dyes are broadly employed in plastic toys, textile staining, printing of paper, food, various plastic wares, dye cinematography, pharmaceuticals, cosmetics, and other important industries. During the process of fabric dyeing, a huge quantity of colored wastewater is generated as polluted effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adinew B (2012) Textile effluent treatment and decolourization techniques—a review. Chem Bulg J Sci Educ 21:434–456

    CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Aksu, Donmez (2005) Studied the combine effect of molasses sucrose and Remazole Blue or Remazole Black B reactive dye on the growth and bioaccumulation properties of adapted Candida tropicalis. Process Biochem 40:2443–2453

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (1995) Standard methods for the examination of water and wastewater, 18th edn. APHA, Washington, DC

    Google Scholar 

  • Anjaneyulu Y, Sreedhara Chary N, Suman Raj DS (2005) Decolourization of industrial effluents—available methods and emerging technologies—a review. Rev Environ Sci Biotechnol 4:245–273. https://doi.org/10.1007/s11157005-1246-z

    Article  CAS  Google Scholar 

  • Annibale AD, Stazi SR, Vinciguerra V, Sermanni GG (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77(2–3):265–273

    Article  PubMed  Google Scholar 

  • Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Schmeiser HH, Phillips DH (2002) Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Carcinogenesis 23(11):1937–1945

    Article  CAS  PubMed  Google Scholar 

  • Aruna B, Silviya LR, Kumar ES, Rani PR, Prasad DVR, Vijaya Lakshmi D (2015) Decolorization of Acid Blue 25 dye by individual and mixed bacterial consortium isolated from textile effluents. Int J Curr Microbiol App Sci 4:1015–1024

    CAS  Google Scholar 

  • Arun Prasad AS, Bhaskara Rao KV (2010) Physico chemical characterization of textile effluent and screening for dye decolorizing bacteria. Glob J Biotechnol Biochem 5(2):80–86

    CAS  Google Scholar 

  • Asamudo NU, Daba AS, Ezeronyel OU (2005) Bioremediation of textile effluent using Phanerochaete chrysosporium. Afr J Biotechnol 4:1548–1553

    CAS  Google Scholar 

  • Asgher M, Yasmeen Q, Iqbal HMN (2013) Enhanced decolorization of Solar Brilliant Red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J Biol Sci 20:347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu BR, Parande SR, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

    CAS  Google Scholar 

  • Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Rev 19:350–370

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Mcmullan G, Marchant R, Singh D (1997) The isolation of thermophilic bacterial cultures capable of textile dyes decolourisation. Environ Int 23:547–551

    Article  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rod fungi use to degrade pollutants. Environ Sci Technol 28:320–328

    Article  Google Scholar 

  • Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2003) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge contaminated sites. Appl Environ Microbiol 69:1431–1441

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Swrampalli RY, Mishra K, Tyagi RD, Meunier N, Blais JF (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxic Radioact Waste Manage 10:59–72

    Article  CAS  Google Scholar 

  • Bumpus JA (2004) Biodegradation of azo dyes by fungi. In: Arora D (ed) Fungal biotechnology in agriculture, food and environmental applications. Marcel Dekker/University of Northern Iowa, Cedar Falls, pp 457–469

    Google Scholar 

  • Cao H (2000) Decolorization of textile dyes by white rot fungi. PhD dissertation, University of Georgia

    Google Scholar 

  • Carneiro PA, Nogueira RFP, Zanoni MVB (2007) Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dyes Pigments 74:127–132

    Article  CAS  Google Scholar 

  • Chang JS, Chen BY, Lin YS (2004) Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresour Technol 91:243–248

    Article  CAS  PubMed  Google Scholar 

  • Chao WL, Lee SL (1994) Decolorization of azo dyes by three white rot fungi: influence of carbon source. World J Microbiol Biotechnol 10:556–559

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari K, Bhatt V, Bhargava A, Seshadri S (2011) Combinational system for the treatment of textile waste water: a future perspective. Asian J Water Environ Pollut 8:127–136

    CAS  Google Scholar 

  • Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chequer F, Dortaz D, Oliveira D (2011) Azo dyes and their metabolites: does the discharge of the azo dyes into water bodies represent human and ecological risks? In: Hauser P (ed) Advances in treating textile effluents. InTechOpen, London. doi:10.5772/19872 ISBN: 978-953-307-704-8

    Google Scholar 

  • Christie R (2001) Colour chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Cripps C, Bumpus AJ, Aust DS (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowski A (2001) Adsorption from theory to practice. Adv Colloid Interf Sci 93:135–224

    Article  CAS  Google Scholar 

  • Decolourization of industrial effluents–available methods and emerging technologies – a review (PDF Download Available) (n.d.) Available from: https://www.researchgate.net/publication/227331233_Decolourization_of_Industrial_Effluents_-_Available_Methods_and_Emerging_Technologies_-_A_Review. Accessed 25 July 2017

  • Dhawale SW, Dhawale SS, Dean-Ross D (1992) Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol 58:3000–3006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias AEXO (2000), Biorremediação de áreas afetadas por resíduos sólidos tóxicos. Resíduos sólidos, ambiente e saúde: uma visão multidisciplinar. In: Sisinno CLS, Oliveira RM (eds). Editora Fiocruz, Rio de Janeiro, pp 79–98

    Google Scholar 

  • Eaton D, Chang HM, Kirk TK (1980) Fungal decolorization of kraft bleach plant effluent. TAPPI J 63:103–109

    CAS  Google Scholar 

  • Enayatizamir N, Tabandeh F, Rodríguez Couto S, Yakhchali B, Alikhani HA, Mohammadi L (2011) Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium. Bioresour Technol 102:10359

    Article  CAS  PubMed  Google Scholar 

  • Erswell A, Brouckaert CJ, Buckley CA (1988) The reuse of reactive dye liquors using charged ultrafiltration membrane technology. Desalination 70:157–167

    Article  CAS  Google Scholar 

  • Evangelista-Barreto NS, Albuquerque CD, Vieira RHSF, Campos-Takaki GM (2010) Cometabolic decolorization of the reactive azo dye Orange II by Geobacillus stearothermophilus UCP 986. Text Res J79 14:1266–1273

    Google Scholar 

  • Ezeronye OU, Ubalua AO (2005) Afr J Biotechnol 4(3):266–272

    CAS  Google Scholar 

  • Feigel BJ, Knackmuss HJ (1993) Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol 159(2):124–130

    Article  CAS  PubMed  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  PubMed  Google Scholar 

  • Fukuzumi T (1980) Microbial decolorization and defoaming of pulping waste liquors in lignin biodegradation. In: Jurj TK, Higuchi T, Chang H (eds) Microbiology, chemistry and potential applications, vol 1. CRC Press, Boca Raton, pp 215–230

    Google Scholar 

  • Gahr F, Hermanutz F, Oppermann W (1994) Ozonation an important technique to comply with new German laws for textile wastewater treatment. Water Sci Technol 30:255–263

    Article  Google Scholar 

  • Gupta GS, Prasad G, Singh VH (1990) Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Water Res 24:45–50

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S, Tyagi I (2014a) Potential of activated carbon from wasterubber tire for the adsorption of phenolics: effect of pretreatment conditions. J Colloids Surf Sci 417:420–430

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas Nayak A, Agarwal S, Chaudhary M, Tyagi I (2014b) Removal of Ni(II) ions from water using porous carbon derived from scrap tyre. J Mol Liq 190:215–222

    Article  CAS  Google Scholar 

  • Hadibarata T, Adnan LA, Yusoff AR, Yuniarto A, Zubir MM, Khudhair AB, Teh ZC, Naser MA (2013) Microbial decolorization of an azo dye Reactive Black 5 using white-rot fungus Pleurotus eryngii F032. Water Air Soil Pollut 224(6):1595

    Article  CAS  Google Scholar 

  • Hanan H (2012) Omar Botany Dept. Faculty of Science, Tanta University, Tanta, Decolorization of dyes by microalgae 20:20–21

    Google Scholar 

  • Hao OJ, Kim H, Chang PC, Phang W (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  • Hassani AH, Seif S, Javid AH, Borghei M (2008) Comparison of adsorption process by GAC with novel formulation of coagulation flocculation for color removal of textile wastewater. Int J Environ Res 2(3):239–248

    CAS  Google Scholar 

  • Heinfling A, Bergbauer M, Szewzyk U (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. App Microbiol Biotechnol 48:261–266

    Article  CAS  Google Scholar 

  • Hemapriya J, Kannan R, Vijayanand S (2010) Bacterial decolorization of textile azo dye Direct Red-28 under aerobic conditions. J Pure Appl Microbiol 4(1):309–314

    CAS  Google Scholar 

  • Hosono M, Arai H, Aizawa M, Yamamoto I, Shimizu K, Augiyama M (1993) Decolorization and degradation of azo dye in aqueous solution supersaturated with oxygen by irradiation of high-energy electron beam. Appl Radiat Iso 44:1199–1203

    Article  CAS  Google Scholar 

  • Ibrahim MB, Poonam N, Datel S, Roger M (1996) Microbial decolorization of textile dye–containing effluents: a review. Bioresour Technol 58(3):217–227

    Article  Google Scholar 

  • Ince NH, Gönenç DT (1997) Treatability of a textile azo dye by UV/H2O2. Environ Technol 18(2):179–185

    Article  CAS  Google Scholar 

  • Ince NH, Tezcanh G (1999) Treatability of textile dyebath effluents by advanced oxidation: preparation for reuse. Water Sci Technol 40:183–190

    Article  CAS  Google Scholar 

  • Jarosz Wilkołazka A, Kochmańska Rdest J, Malarcz̄yk E, Wardas W, Leonowicz A (2002) Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzym Microb Technol 30:566–572. https://doi.org/10.1016/S0141-0229(02)00022-4

    Article  Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, Bansal R, Purwar R (2004) Color removal from textile effluents. Ind J Fibre Text Res 29:239–259. ISSN 0971-042

    CAS  Google Scholar 

  • Joshni CT, Subramaniam K (2011) Enzymatic degradation of azo dyes—a review. Int J Environ Sci 1(6):1250–1260

    Google Scholar 

  • Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigments 51:25–40

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2002) Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotation biological contactor. Enzym Microb Technol 30:195–199

    Article  CAS  Google Scholar 

  • Karcher S, Kornmueller A, Jekel M (1999) Removal of reactive dyes by sorption/complexation with cucurbituril. Water Sci Technol 40:425–433

    Article  CAS  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourisation: recent advances and future potential. Environ Int 35:127–141

    Article  CAS  PubMed  Google Scholar 

  • Kestioglu K, Yonar T, Azbar N (2005) Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochem 40:2409–2416, ISSN 0032-9592

    Article  CAS  Google Scholar 

  • Khouni I, Marrot B, Ben Amar R (2012) Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Sep Purif Technol 87:110–119

    Article  CAS  Google Scholar 

  • Kirby N, Marchant R, McMullan G (2000) Decolorization of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96

    Article  CAS  PubMed  Google Scholar 

  • Kirk-Othmer (2004) Encyclopedia of chemical technology, vol 7, 5th edn. Wiley Interscience, New York

    Google Scholar 

  • Knapp JS, Vantoch Wood EJ, Zhang F (2001) Use of wood–rotting fungi for the decolorization of dyes and industrial effluents. In: Gadd GM (ed) Fungi in bioremediation, Cambridge University Press, Cambridge, pp 253–261

    Google Scholar 

  • Krishnaveni M (2011) Characterization and decolorization of dye and textile effluent by laccase from Pluerotus florida—a white rot fungi. Int J Pharma Biol Sci 2(1):913–918

    Google Scholar 

  • Kunz A, Peralta-Zamora P, Moraes SG, Dúran N (2002) Novas tendências no tratamento de efluentes têxteis. Quím Nova 25(1):78–82

    Article  CAS  Google Scholar 

  • Le Marechal AM (1998) Method of decolouration of textile waste water. Dyes Pigments 37:335–356

    Article  Google Scholar 

  • Lin SH, Lin CH (1993) Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res 27:1743–1748

    Article  CAS  Google Scholar 

  • Marco A, Esplugas S, Saum G (1997) How and why to combine chemical and biological processes for wastewater treatment. Water Sci Technol 35:231–327

    Article  Google Scholar 

  • Marco SL, Carla A, Ana S, Jose AP, Albino AD (2005) Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzym Microb Technol 51:39

    Google Scholar 

  • Martorell MM, Pajot HF, de Figueroa LIC (2012) Dye-decolourizing yeasts isolated from Las Yungas rainforest. Dye assimilation and removal used as selection criteria. Int Biodeterior Biodegrad 66:25–32

    Article  CAS  Google Scholar 

  • Mathur N, Bhatnagar P (2007) Mutagenicity assessment of textile dyes from Sanganer (Rajasthan). J Environ Biol 28(1):123–126

    CAS  PubMed  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolorization and degradation of textile dyes. Appl Microb Biotechnol 1(2):81–87

    Article  Google Scholar 

  • Michel FC Jr, Dass SB, Grulke EA, Reddy CA (1991) Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft beach plant effluent. Appl Environ Microbiol 57:2368–2375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milikli G, Ramachandra Rao CSV (2012) Molecular characterization and optimization of bacteria in azo dye degradation. Int J Integr Sci Innov Technol 1(5):32–39

    CAS  Google Scholar 

  • Mishra G, Tripathy M (1993) A critical review of the treatments of decolorization of textile effluent. Colourage 40:35–38

    CAS  Google Scholar 

  • Mock WL (1995) Cucurbituril. In: Weber E (ed) Supramolecular chemistry II—host design and molecular recognition. Topics in Current Chemistry, vol 175. Elsevier, Berlin, pp 1–24

    Google Scholar 

  • Mubarak Ali DA, Suresh R, Praveen Kumar M, Gunasekaran M, Thajuddin N (2011) Efficiency of textile dye decolorization by marine cyanobacterium, Oscillatoria formosa NTDM02. Afr J Basic Appl Sci 3(1):09–13

    Google Scholar 

  • Namdhari BS, Rohilla SK, Salar RK, Gahlawat SK, Bansal P, Saran AK (2012) Decolorization of reactive blue MR, using Aspergillus species isolated from textile waste water. ISCA J Biol Sci 1(1):24–29

    Google Scholar 

  • Nasser NM, El-Geundi M (1991) Comparative cost of colour removal from textile effluents using natural adsorbents. J Chem Technol Biotechnol 5:257–264

    Google Scholar 

  • Nawar SS, Doma HS (1989) Removal of dyes from effluents using low cost agricultural by products. Sci Total Environ 79:271–279

    Article  CAS  Google Scholar 

  • Ndasi NP, Augustin M, Bosco TJ (2011) Biodecolourisation of textile dyes by local microbial consortia isolated from dye polluted soils in Ngaoundere (Cameroon). Int J Environ Sci 1(7):1403

    CAS  Google Scholar 

  • Neill CO, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Colour in textile dye effluents—sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  • Non-conventional low-cost adsorbents for dye removal: a review (PDF Download Available) (n.d.) Available from: https://www.researchgate.net/publication/7751213_Non-Conventional_Low-Cost_Adsorbents_for_Dye_Removal_A_Review. Accessed 27 July 2017

  • Novotny C, Svobodova K, Kasinath A, Erbanova P (2004) Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int Biodeter Biodegr 54:215–223

    Article  CAS  Google Scholar 

  • Novotný C, Dias N, Kapanen A et al (2006) Comparative use of bacterial, algal and protozoan test to study toxicity of azo and anthraquinone dyes. Chemosphere 63:1436–1442

    Article  CAS  PubMed  Google Scholar 

  • Ogutveren UB, Kaparal S (1994) Colour removal from textile effluents by electrochemical destruction. J Environ Sci Health A29:1–16

    CAS  Google Scholar 

  • Oliveira DP, Carneiro PA, Sakagami MK, Zanoni MVB, Umbuzeiro GA (2007) Chemical characterization of a dye processing plant effluent—identification of the mutagenic components. Mutat Res Rev Mutat Res 626:135–142

    CAS  Google Scholar 

  • Ollikka P, Alhonma KK, Leppa Nen VM, Glumoff T, Raijola T, Suominen I (1993) Decolorization of azo, triphenyl methane, heterocyclic and polymeric dyes by lignin peroxidase isoenzymes from Phanerocheate chrysosporium. Appl Environ Microbiol 59:4010–4016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci 15(10):1310–1316

    Article  Google Scholar 

  • Padmanaban VC, Prakash SS, Sherildas P, Jacob JP, Nelliparambil K (2013) Biodegradation of anthraquinone based compounds. Rev Int J Adv Res Eng Technol (IJARET) 4(4):74–83

    Google Scholar 

  • Pak D, Chang W (1999) Decolorizing dye wastewater with low temperature catalytic oxidation. Water Sci Technol 40(4–5):115–121

    Article  CAS  Google Scholar 

  • Park CH, Lee M, Lee B, Kim SW, Chase HA, Lee J, Kim S (2006) Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. J Biochem Eng 36(1):59–65

    Article  CAS  Google Scholar 

  • Parshetti G, Kalme S, Saratale G, Govindwar S (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim Slov 53:492–498

    CAS  Google Scholar 

  • Paszczynski A, Pasti-Grigby MB, Goszczyanski S, Crwaford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phenerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelegrini R, Peralto-Zamora P, de Andrade AR, Reyers J, Duran N (1999) Electrochemically assisted photocatalytic degradation of reactive dyes. App Catal B Environ 22:83–90

    Article  CAS  Google Scholar 

  • Peralto-Zamora P, Kunz A, Gomez de Morales S, Pelegrini R, de Capos MP, Reyes J, Duran N (1999) Degradation of reactive dyes I. A comparative study of ozonation, enzymatic and photochemical processes. Chemosphere 38:835–852

    Article  Google Scholar 

  • Pereira MFR, Soares SF, Orfao JJM, Figueiredo JL (2003) Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon 41(4):811–821

    Article  CAS  Google Scholar 

  • Perie FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57:2240–2245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Poots VJP, McKay G, Healy JJ (1976) The removal of acid dye from effluent using natural adsorbents—I, peat. Water Res 10:1061–1066

    Article  CAS  Google Scholar 

  • Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618626

    Google Scholar 

  • Raghavacharya C (1997) Color removal from industrial effluents—a comparative review of available technologies. Chem Eng World 32:53–54

    CAS  Google Scholar 

  • Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219–238

    Article  CAS  Google Scholar 

  • Rajaguru P, Fairbairn LJ, Ashby J, Willington MA, Turner S, Woolford LA, Chinnasamy N, Rafferty JA (1999) Genotoxicity studies on the azo dye Direct Red 2 using the in vivo mouse bone marrow micronucleus test. Mutat Res 444(1):175–180

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran P, Sundharam R, Palaniyappan J, Munusamy AP (2013) Potential process implicated in bioremediation of textile effluents. A Rev Adv Appl Sci Res 4(1):131–114

    CAS  Google Scholar 

  • Ramalho PA, Cardoso MH, Cavaco-Paulo A, Ramalho MT (2004) Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangnekar DW, Singh PP (1980) An introduction to synthetic dyes. Himalaya, Bombay

    Google Scholar 

  • Rao KLLN, Krishnaiah K, Ashutush N (1994) Color removal from a dye stuff industry effluent using activated carbon. Ind J Chem Technol 1:13–19

    CAS  Google Scholar 

  • Ravi Kumar MNV, Sridhari TR, Bhavani KD, Dutta PK (1998) Trends in color removal from textile mill effluents. Colorage 40:25–34

    Google Scholar 

  • Razia Khan K, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12(1):75–97

    Article  CAS  Google Scholar 

  • Reghukumar C, Chandramohan D, Michel FC Jr, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent BPE by marine fungi. Biotechnol Lett 18(1):105–106

    Article  Google Scholar 

  • Rice CP, Sikka HC (1973) Fate of dieldrin in selected species of marine algae. Bull Enviror Contam Toxicol 9:116–123

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  PubMed  Google Scholar 

  • Rohilla SK, Salar RK, Kumar J (2012) Optimization of physiochemical parameters for decolorization of Reactive Black HFGR using soil fungus, Aspergillus allhabadii MTCC 9988. J Bioremed Biodeg 3(6):153–157

    CAS  Google Scholar 

  • Saharan BS, Ranga P (2011) Enhanced decolourization of Congo Red dye under submerged fermentation (SMF) process by newly isolated Bacillus subtilis SPR42. J Appl Nat Sci 3(1):51–53

    Article  CAS  Google Scholar 

  • Sahasrabudhe M, Pathade G (2013) Biodegradation of azo dye CI Reactive Orange 16 by an actinobacterium Georgenia sp. CC-NMPT-T3. Int J Adv Res 1(7):91–99

    Google Scholar 

  • Saleh Al-Garni M, Ghanem KM, Kubli SA, Biag AK (2013) Decolourisation of Crystal Violet by mono and mixed bacterial culture techniques using optimized culture conditions. Pol J Environ Stud 22(5):1297–1306

    Google Scholar 

  • Santos AB, Cervantes FJ, Lier JB (2007) Review paper on current technologies for decolourisation of textile waste waters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  CAS  PubMed  Google Scholar 

  • Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol 100:2493–2500

    Article  CAS  PubMed  Google Scholar 

  • Sathiya Moorthi P, Periyar Selvam S, Sasikalaveni A, Murugesan K, Kalaichelvan PT (2007) Decolorization of textile dyes and their effluents using white rot fungi. Afr J Biotechnol 6(4):424–429

    Google Scholar 

  • Sawhney R, Kumar A (2011) Congo Red (azo dye) decolorization by local isolate VTII inhabiting dye effluent exposed soil. Int J Environ Sci 1:1261–1267

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalagae. FEMS Microbiol Lett 176(2):291–301

    Article  Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM (2013) Microbial decolorization of Methyl Orange dye by Pseudomonas spp. OA Biotechnol 2(1):10

    CAS  Google Scholar 

  • Shahvali M, Assadi MM, Rostani K (2000) Effect on environmental parameters on decolorization of textile wastewater using Phanerochaete chrysosporium. Bioprocess Eng 23:721–726

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation—fungal bioremediation. Wiley Interscience, Hoboken, pp 421–471

    Google Scholar 

  • Slokar YM, Le Marechal AM (1997) Methods of decoloration of textile wastewaters. Dyes Pigments 37:335–356

    Article  Google Scholar 

  • Soares GM, Amorim MT, Hrdina R, Ferreire MC (2002) Studies on the biotransformation of novel diazo dyes by laccase. Process Biochem 37:581–587

    Article  CAS  Google Scholar 

  • Solmaz A, Ustun SK, Birgul GE, Yonar A (2009) Advanced oxidation of textile dyeing effluents: comparison of Fe+2/H2O2, Fe+3/H2O2, O3 and chemical coagulation processes. Fresenius Environ Bull 18:1424–1433

    CAS  Google Scholar 

  • Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66:319–329

    Article  CAS  PubMed  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azodyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  PubMed  Google Scholar 

  • Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol Appl Sci 3(2):670–690

    CAS  Google Scholar 

  • Sudhakar P, Palaniappan R, Gowrie Shankar R (2002) Review on microbial decolourisation of textile dyes. Asian J Microbiol Biotechnol Environ 2:203–208

    Google Scholar 

  • Suteu D, Zahariya C, Bilba D, Muresan A, Muresan, Popesen A (2009) Decolorization wastewaters from the textile industry physical methods, chemical methods. Industria Textilă 60(5):1097–1102

    Google Scholar 

  • Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enz Microbial Technol 24:130–137

    Article  CAS  Google Scholar 

  • Tikoo V, Scragg AH, Shales W (1997) Degradation of pentachlorophenol by microalgae. J Chem Tech Biotechnol 68:425–431

    Article  CAS  Google Scholar 

  • Toh YC, Yen JJL, Obbard P, Ting YP (2003) Decolourization of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzym Microb Technol 33:569–575

    Article  CAS  Google Scholar 

  • Tripathi A, Srivastava SK (2011) Ecofriendly treatment of azo dyes: bio decolorization using bacterial strains. Int J Biosci Biochem Bioinfo 1(1):150–156

    Google Scholar 

  • Tsuboy MS, Anjeli JPF, Mantovani MS, Knasmiiller S, Umbuzeiro GA, Ribeiro LR (2007) Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicol In Vitro 21:1650–1655

    Article  CAS  PubMed  Google Scholar 

  • Umbuzeiro GA, Freeman H, Warren SH, Kummrow F, Claxton LD (2005) Mutagenicity evaluation of the commercial product CI Disperse Blue 291 using different protocols of the Salmonella assay. Food Chem Toxicol 43(1):49–56

    Article  CAS  Google Scholar 

  • Van Der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azodyes—a short review of bioreactor studies. Water Res 39:1425–1440

    Article  CAS  PubMed  Google Scholar 

  • Vidhyakalarani R, Premaraj S (2013) Microbial decolorization of azo dye Reactive Blue 19. Int J Curr Microbiol Appl Sci 2:370–372

    Google Scholar 

  • Vijaykumar MH, Veeranagouda Y, Neelakanteshwar K, Karegoudar TB (2006) Decolorization of 1:2 metal complex dye Acid Blue 193 by a newly isolated fungus Cladosporium cladosporioides. World J Microbiol Biotechnol 22:157–162

    Article  CAS  Google Scholar 

  • Wang C, Yediler A, Linert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dye stuff, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fisheri. Chemosphere 46:339–344

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang Z, Hong N, Yang X, Qianqian L, Lin L (2012) Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb Cell Factories 11(1):75

    Article  CAS  Google Scholar 

  • Weber WJ Jr, Friedman LD, Bloom R Jr (1970) Physicochemical treatment of wastewater. J Water Pollut Control Fed 42:83–99

    CAS  Google Scholar 

  • Weisburger JH (2002) Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res Fund Mol Mech Mutagen 506–507:9–20

    Article  Google Scholar 

  • Wen-Tung W, Jean M-D (2012) Evaluation of light irradiation on decolorization of azo dyes by Tsukamurella sp. J 8025. Appl Mech Mater 145:304–308

    Google Scholar 

  • Wijannarong S, Aroonsrimorakot S, Thavipoke P, Sangjan S (2013) Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Procedia 5:279–282

    Article  CAS  Google Scholar 

  • Wijetunga S, Li XF, Jian C (2010) Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. J Hazard Mater 177(1–3):792–798

    Article  CAS  PubMed  Google Scholar 

  • Wojnarovits L, Takacs E (2008) Irradiation treatment of azo dye containing wastewater: an overview. Radiat Phys Chem 77:225–244

    Article  CAS  Google Scholar 

  • Xu Y, Lebrun RE (1999) Treatment of textile dye plant effluent by nanofiltration membrane. Sep Sci Technol 34:2501–2519

    Article  CAS  Google Scholar 

  • Xu Y, Zhang WX (2005) Sub colloidal Fe/Ag particles for reductive dehalogenation chlorinated benzenes. Ind Eng Chem Res 39:2238–2244

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Wang WH, Gu JD (2005) Decolorization of dyes and textile waste water by potassium permanganate. Chemosphere 59:893–898

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wyatt IIDT, Bahorsky M (1998) Decolorization of dyes using UV/H2O2 photochemical oxidation. Text Chem Color 30:27–35

    CAS  Google Scholar 

  • Yang Q, Yang M, Pritsch K, Yediler A, Hagn A, Schloter M, Kettrup A (2003) Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol Lett 25(9):709–713

    Article  CAS  PubMed  Google Scholar 

  • Zaharia C, Suteu C, Muresan A (2011) Options and solutions of textile effluent decolourization using some specific physico-chemical treatment steps. Proceedings of the 6th international conference on environmental engineering and management ICEEM’06, Balaton Lake, Hungary, September 1–4, pp 121–122

    Google Scholar 

  • Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131

    Article  CAS  PubMed  Google Scholar 

  • Zhisheng Y, Xianghua W (2005) Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. Int Biodeterior Biodegrad 56:109–114

    Article  CAS  Google Scholar 

  • Zhou W, Zimmermann W (1993) Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett 107:157–162

    Article  CAS  PubMed  Google Scholar 

  • Žnidaršič P, Pavko A (2001) Morphology of filamentous fungi. Food Technol Biotechnol 39(3):237–252

    Google Scholar 

  • Zollinger H (1987) Synthesis, properties of organic dyes and pigments. In: Color chemistry. VCH, New York, pp 2–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sweety (2018). Bioremediation of Textile Dyes: Appraisal of Conventional and Biological Approaches. In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_23

Download citation

Publish with us

Policies and ethics