Skip to main content

Rhizoremediation of Azodyes by Constructed Wetland Technology using Typha latifolia

  • Chapter
  • First Online:
Phytobiont and Ecosystem Restitution

Abstract

Synthetic azodyes used in textile industries generate hazardous waste and adverse effect on soil and water, probably affects the whole environment. The traditional treatment technologies used for synthetic dyes are costly and adversely affect the biota. Phytoremediation, an arising new technology that generally uses the aquatic macrophytes to reduce, stabilize and also remove toxic pollutants in an ecofriendly and cost effective way. However, the stress on plants results in slow growth and low biomass and its rhizospheric bacteria will enhance the degradation potential and reduce the stress on plants. The chapter describes the bioremediation of azodyes by the combination of plant and root associated bacteria of Typha latifolia in constructed wetland system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjana S, Salom Gnana Thanga V (2011) Phytoremediation of synthetic textile dyes. Asian J Microbiol Biotech Environ Sci 13:30–33

    Google Scholar 

  • Armstrong AC (1979) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  CAS  Google Scholar 

  • Chandanshivea VV, Rane NR, Tamboli AS, Gholvavec AR, Khandare RV, Govindwara SP (2017) Coplantation of aquatic macrophytes Typha angustifolia and Paspalumscrobuculatum for effective treatment of textile industry effluent. J Hazard Mater 338:47–56

    Article  Google Scholar 

  • Chaudhry Q, Zandstra MB, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment ESPR. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chequer MFD, Dorta DJ, de Oliveira DP (2011) Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks. In: Hauser P (ed) Advances in treating textile effluent. IntechOpen, London, pp 27–48

    Google Scholar 

  • Cluis C (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. Environ Teach J 2:61–67

    Google Scholar 

  • Dipu S, Kumar AA, Gnana S, Thanga V (2011) Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist 31:263–268

    Article  Google Scholar 

  • Garg A, Krishna Bhat L, Charles Bock W (2002) Mutagenicity of aminoazobenzene dyes and related structures: a QSAR/QPAR investigation. Dyes Pigments 55:35–52

    Article  CAS  Google Scholar 

  • Gayathri S, Saravanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt marsh plant species. Indian J Biotechnol 9:397–402

    Google Scholar 

  • Haberl R, Grego S, Langergraber G, Kadlec RH (2003) Constructed wetlands for the treatment of organic pollutants. Artic J Soils Sediments 3:109–124

    Article  CAS  Google Scholar 

  • Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63:1744–1753

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uberneuere Erfahrungen und Probleme auf dem Gebieteder Bodenbakteriologie unterbessonderer Beru¨cksichtigungder Grundung und Brache. Arb Dtsch Landwirtsch Ges Berl 98:59–78

    Google Scholar 

  • IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans (1982) Chemicals, industrial processes and industries associated with cancer in humans. Lyon Suppl 4:1–292

    Google Scholar 

  • Jaya Santha Kumari H, Krishnamoorthy P, Arumugam TK (2015) Removal of rhodamine B from aqueous solution by activated carbon prepared from the natural plant Typha latifolia by adsorption: kinetic and isotherm studies. Int J Chem Tech Res 7(7):2867–2874

    CAS  Google Scholar 

  • Jayanthy V, Geetha R, Rajendran R, Prabhavathi P, Karthik Sundaram S, Dinesh Kumar S, Santhanam (2014) Phytoremediation of dye contaminated soil by Leucaenaleucocephala (subabul) seed and growth assessment of vigna radiata in the remediated soil. Saudi J Biol Sci 21:324–333

    Article  CAS  Google Scholar 

  • Jenssen PD, Maehlum T, Krogstad (1993) Potential use of constructed wetlands for wastewater treatments in northern environments. Water Sci Technol 28:149–157

    Article  Google Scholar 

  • Khandare RV, Govindwar SP (2015) Research review paper phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33:1697–1714

    Article  CAS  Google Scholar 

  • Khandare RV, Kabra AN, Kurade MB, Govindwar SP (2011) Phytoremediation potential of Portulaca grandiflora Hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (reactive Blue 172). Bioresour Technol 102:6774–6777

    Article  CAS  Google Scholar 

  • Khandare RV, Rane NR, Waghmode TR, Govindwar SP (2012) Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Sci Pollut Res 19:1709–1718

    Article  CAS  Google Scholar 

  • Khandare R, Kabra A, Kadam A, Govindwar S (2013) Treatment of dye containing wastewaters by a developed lab scale phytoreactor and enhancement of its efficiency by bacterial augmentation. Int Bio Deterior Bidegrad 78:89–97

    Article  CAS  Google Scholar 

  • Kharub M (2012) Use of various technologies, methods and adsorbents for the removal of dye. J Environ Res Dev 6:879–883

    Google Scholar 

  • Kvet J, Dusek J, Husak S (1999) Vascular plants suitable for wastewater treatment in temperate zones. Nutrient cycling and retention in natural and constructed wetlands. Conference paper, pp 101–110

    Google Scholar 

  • Li M, Zhou Q, Tao M, Wang Y, Jiang L, Wu Z (2010) Comparative study of microbial community structure in different filter media of constructed wetland. J Environ Sci 22:127–133

    Article  CAS  Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology 29:248–258

    CAS  Google Scholar 

  • Neppolian B, Sakthivel S, Banumathi Arbbindoo, Palanichamy M, Murugesan V (1998) Photocatalytic degradation of textile dye commonly used in cotton fabrics. Recent Adv Basic Appl Asp Ind Catal 113:329–335

    CAS  Google Scholar 

  • Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2008) Synthetic reactive dye wastewater treatment by narrow-leaved cattail. J Energy Environ 9:231–252

    Google Scholar 

  • Nilsson R, Nordlinder R, Wass U, Meding B, Belin L (1993) Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Br J Ind Med 50:65–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • NTP (2005) Technical report on the toxicology and carcinogenesis studies of malachite green chloride and leucomalachite green: national toxicology program. US Department of Health and Human Services, Research Triangle Park

    Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9:6010–6016

    CAS  Google Scholar 

  • Olejnik D, Wojciechowski K (2012) Conception of constructed wetland for dyes removal in water solutions. Chemik 66:611–614

    CAS  Google Scholar 

  • Patil P, Neetin S, Govindwar A, Jadhav JP, Bapat V (2009) Degradation analysis of Reactive Red 198 by hairy roots of Tagetespatula L. (Marigold). Planta 230:725–735

    Article  CAS  Google Scholar 

  • Patil SM, Chandanshive VV, Rane NR, Khandare RV, Watharkar AD, Govindwar SP (2016) Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation. Environ Res 146:340–349

    Article  CAS  Google Scholar 

  • Pilon SE (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  Google Scholar 

  • Pilon-Smits EAH, John LF (2006) Environmental cleanup using plants: biotechnological advances and ecological considerations. Front Ecol Environ 4:203–210

    Article  Google Scholar 

  • Platzek T, Lang C, Grohmann G, Baltes W (1999) Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum Exp Toxicol 18:552–559

    Article  CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Soil Biol 383:42–48

    Google Scholar 

  • Pundlik W, Krishnamurthy R, Varsadia M (2013) Removal of dye effluent by different aquatic plant in Kadodara region by rhizofilteration technique. J Sci Res Pharm 2:1–5

    CAS  Google Scholar 

  • Saba B, Madeeha J, Azeem K, Irfan A, Ann DC (2015) Effectiveness of Rice Agricultural waste, microbes and wetland plants in the removal of Reactive black-5 azodye in microcosm constructed wetlands. Int J Phytoremediation 7:1060–1067

    Article  Google Scholar 

  • Sánchez-Orozco R, Martínez-Juan M, García-Sánchez JJ, Ureña-Núñez F (2018) Removal of methylene blue from aqueous solution using Typha stems and leaves. BioResources 13(1):1696–1710

    Article  Google Scholar 

  • Sanmuga Priya E, Senthamil Selvan P (2017) Water hyacinth (Eichhornia crassipus) – an efficient and economic adsorbent for textile effluent treatment – a review. Arab J Chem 10:S3548–S3558

    Article  CAS  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Arnold Publishers, London, pp 1–610

    Google Scholar 

  • Shafqat M, Khalid A, Mahmood T, Siddique MT, Han J-I, Habteselassie MY (2017) Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth. J Chem Technol:1–38

    Google Scholar 

  • Shah K (2014) Biodegradation of azo dyes compound. Int Res J Biochem Biotechnol 1:5–13

    Google Scholar 

  • Sharma KP, Sharma K, kumar S, Sharma S, Grover R, Soni P, Bharadwal SM, Chaturvedi RK, Sharma S (2005) Response of selected aquatic macrophytes towards textile dye waste water. Indian J Biotechnol 4:538–545

    Google Scholar 

  • Sharma S, Kalpana A, Shweta SV, Singh P (2007) Toxicity assessment of textile dye wastewater using swiss albino rats. Aust J Ecotoxicol 13:81–85

    CAS  Google Scholar 

  • Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typhadomingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159

    Article  CAS  Google Scholar 

  • Shehzadi M, Fatima K, Imran A, Mirza MS, Khan QM, Afzal M (2015) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst 150:1261–1270

    Article  Google Scholar 

  • Srivastava S, Singh N, Srivastava A, Sinha R (1995) Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes fossilis. Aquat Toxicol 31:241–247

    Article  CAS  Google Scholar 

  • Tan K, Morad N, Ooi JQ (2016) Phytoremediation of methylene blue and methyl orange using Eichhornia crassipus. Int J Environ Sci Dev 7:724–728

    Article  CAS  Google Scholar 

  • Vymazal J, Lenkropfelova (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Dordrecht

    Book  Google Scholar 

  • Wallance S, Nivala J, Meyers T (2008) Statistical analysis of treatment performance in aerated and non-aerated subsurface flow constructed wetlands. pp 171–180

    Google Scholar 

  • Wang Z, Xue M, Huang K, Liu Z (2011) Textile dyeing wastewater treatment. In: Advances in treating textile effluent, pp 91–116

    Google Scholar 

  • Watharkar A, Niraj RR, Swapnil MP, Rahul VK, Jyoti PJ (2013) Enhanced phyto transformation of Navy Blue RX dye by Petunia grandiflora J uss. with augmentation of rhizospheric Bacillus pumilus strain PgJ and subsequent toxicity analysis. Bioresour Technol 142:246–254

    Article  CAS  Google Scholar 

  • Yasar A, Khan M, Tabinda AB, Hayyat MU, Zaheer A (2013) Percentage uptake of heavy metals of different macrophytes in stagnant and flowing textile effluent. J Anim Plant Sci 23:1709–1713

    CAS  Google Scholar 

  • Zhang D, Gersberg RM, Keat TS (2009) Constructed wetlands in China. Ecol Eng 35:1367–1378

    Article  Google Scholar 

Download references

Acknowledgement

The author’s acknowledge the Department of Science and Technology, Government of India, for financial support vide reference no. DST/Disha/SoRF-PM/054/2013 under Women Scientist scheme to carry out this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A.A., Sukumaran, D., Vincent, S.G.T. (2018). Rhizoremediation of Azodyes by Constructed Wetland Technology using Typha latifolia . In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_13

Download citation

Publish with us

Policies and ethics