Skip to main content

Rhizospheric Microbe-Plant Exudate Formulation for Enhanced Restoration of Contaminated Agricultural Soil

  • Chapter
  • First Online:
Phytobiont and Ecosystem Restitution

Abstract

Industrial and human activities add a lot of chemicals to the soil environment. In the oil-producing areas like Nigeria, hydrocarbon contamination has been the major problem. The hydrocarbon contaminants upset the soil ecological balance, including important microbial processes. In the rhizosphere, microbial interactions occur in a dynamic manner, resulting in the production of microbial products of ecological importance. The plant associates exude compounds that benefit the microorganisms. The overall interactions of the plant-microbe products contribute greatly to the reclamation of the contaminated soil. Thus, current emphasis should be placed on the formulation of products that can be effective in soil bioremediation. The rhizospheric microbes and plant exudates should be extensively studied. Microbe-plant exudate formulations have comparative advantages over chemicals applied for reclamation of contaminated soil. Soil formulations are ecologically friendly and cost-effective. This chapter deals with microbial activities and plant exudation in the rhizosphere which help contaminated soil to recover. The prospects of microbe-plant exudate formulation are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and frankia bacteria. Plant Signal Behav 7:636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Wasify RS, Hamid SR (2014) Bacterial biodegradation of crude oil using local isolates. Int J Bacteriol 2014(2014): 863272. 8 p. https://doi.org/10.1155/2014/863272

  • Amund OO, Omole CA, Esiobu N, Ugoji EO (1993) Effects of waste engine oil spillage on soil physicochemical and microbiological properties. J Sci Res Dev 1(1):61–64

    Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial Ecology, 4th edn. Benjamin/Cummings. Fundamentals and applications, San Francisco, Calif, USA, pp 523–530

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang RF, Shen QR, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HT, Perry LG, Simon G, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 89–129 1984

    Google Scholar 

  • Brundrett MC, Abbott LK (2002) Arbuscula mycorrhiza in plant communities. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Plant conservation and biodiversity. Kluwer Academic Publishers, Dordrecht, pp 151–193

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeter Biodegrad 62(3):274–280 2008

    Article  CAS  Google Scholar 

  • Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Factories 8:16

    Article  CAS  Google Scholar 

  • Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon source in sole carbon source test to discriminate soil microbial communities. J Microbiol Meth 30:33–41

    Article  Google Scholar 

  • Canadian council of Ministers of the Environment (CCME) (2001) Canada wide standards for petroleum hydrocarbons (PHC) in soil

    Google Scholar 

  • Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, WisniewskiDyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry 87:65–77

    Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chojnacka J (2010) Biosorption and bioaccumulation the prospects from practical applications. Environ Int 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interaction of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rotpotato partogen Erwinia carotova subsp. atroseptica. FEMS Microbiol Ecol 23:95–106

    Article  CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer-Verlag, Berlin

    Google Scholar 

  • Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodriquez-Carvajal MA, Gil-Serrano AM, Espuny MR et al (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacerbium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • David ND, Sharon LD (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:1–3

    Google Scholar 

  • Debarati P, Gunjan P, Janmejay P, Rakesh VJK (2005) Assessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  Google Scholar 

  • De-La-Pena C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Ramírez IJ, Priego-Rangel S, Torres-Colorado J, Aguirre-Marín DI, Escalante-Espinoza E (2010) Microbial activity during application of different bioremediation treatments in Olmeca crude oil contaminated soil. II Congreso de la Sociedad Latinoamericana de Biotecnología Ambiental y algal, Cancún. México. Publishing Physics Web. http://www3.inecol.edu.mx/solabiaa/ARCHIVOS/documentos/congresos/2010-solabiaa/Memorias_II_Congreso_2010.pdf

  • Dixit S, Singh P (2013) Phycoremediation of lead and cadmium by employing Nostoc muscorum as biosorbent and optimization of its biosorption potential. Int J Phytoremediation 15:801–813

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Springeal D, Schoeters J, Nuyts G, Mergeay M, Diels L (1998) Horizontal transfer of bacterial heavy metal resistance genes and its applications to activated sludge systems. Water Sci Tech 37:465

    Google Scholar 

  • Doornbos RF, Van loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Environmental Protection Agency (2006) Pesticides: science and policy. Washington, DC. Archived from http://www.epa.gov/opp00001/science/efed_databasesdescription.htm on 2014-07-04

  • Franzetti A, Di Gennaro P, Bestetti G, Lasagni A, Pitea D, Collina E (2008) Selection of surfactants for enhancing diesel hydrocarbons contaminated media bioremediation. J Hazard Mater 152:1309–1316

    Article  CAS  PubMed  Google Scholar 

  • Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil contaminated site: petroleum technology Alliance of Canada. Available at http://www.rtdf.org/public/phyto/phylinks.htm

  • Gao Y, Ren L, Ling W, Kang F, Zhu X, Sun B (2010) Effects of low-molecular-weight organic acids on sorption-desorption of phenanthrene in soils. Soil Sci Soc Am J 74:51–59

    Article  CAS  Google Scholar 

  • Gao Y, Yang Y, Ling W, Kong H, Zhu X (2011) Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Sci Soc Am J 75:1694–1703

    Article  CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5(6):497–526

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germida JJ, Frick CM, Farrell RE (2002) Phytoremediation of oil-contaminated soils. Developments Soil Sci 28(2):169–186

    Google Scholar 

  • Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci U S A 109:17633–17638

    Google Scholar 

  • Giri B, Gyang PH, Kumari R, Prasad R, Varma A (2005) Microorganisms in soil: roles in genesis and functions. In: Buscot F, Varma S (eds) Microbial diversity in soil. Springer, Heidelberg, pp 195–212

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Google Scholar 

  • Glick BR, Czarny J, Duan J (2007) Promotion of plant growth by AC deaminase. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial degradation of organophosphate pesticides. Int J Biotechnol Biochem 6:871–876

    Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edward AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, 4th edn. Blackwell Publishing, London 584 pp

    Google Scholar 

  • Gunther T, Dornberger U, Fritsch W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33(2):203–215

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372

    Google Scholar 

  • Gupter VK, Rastogy A (2008) Biosorption of lead (II) from diluted aqueous solutions by non-living algal biomass Odeogonium sp. and Nostoc sp. A comparative study. Colloids Surf Biointerfaces 64:170–178

    Article  CAS  Google Scholar 

  • Haferburg G, Kothe E (2010) Biogeosciences in heavy metal-contaminated soils. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils, soil Biology, vol 31. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_2

  • Haichar FZ et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Soole K, Bentham R (2011) Hydrocarbon phytoremediation in the family Fabaceae–a review. Int J Phytoremediation 13(4):317–332

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Schmid M, Tuinen D, Berg G (2008) Plant-driven selection of microbes. Plant Soil. https://doi.org/10.1007/s11104-008-9814-y

  • Huang H, Li T, Gupta DK, Zhenli HE, Ni XYB, Li M (2011) Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. J Environ Sci 24(3):376–386

    Article  CAS  Google Scholar 

  • Huang GH, Tian HH, Liu HY, Fan XW, Liang Y, Li YZ (2013) Characterization of plant –growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11. Int J Phytoremediation 15:991–1009

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang RF, Shen QR, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907

    Article  CAS  Google Scholar 

  • Ibrahim ML, Ijah UJJ (2014) Biodegradation of crude oil by rhizosphere microorganisms. In: Daniels JA (ed) Advances in environmental research, vol 35. Nova Science Publishers, New York, pp 153–172

    Google Scholar 

  • Ibrahim ML, Ijah UJJ, Manga SB, Rabah AB (2009) Biodegradation of Escravos light crude oil by bacteria isolated from the rhizosphere of Eucalyptus Camaldulensis, Lablab purpureus and Moringa oliefera Bipog3 conference proceedings April 1st–3rd 2009

    Google Scholar 

  • Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad 81:28–34

    Google Scholar 

  • Ijah UJJ, Antai SP (2005) Changes in physicochemical properties and fungal population after application of crude oil to soil. J Environ Sci 9(1):64–72

    Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza: a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota: fungi associations, vol IX. Springer, Berlin, pp 95–113

    Chapter  Google Scholar 

  • Joner EJ, Hirmann D, Szolar OH, Todorovic D, Leyval C, Loibner AP (2004) Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environ Pollut 128:429–435

    Google Scholar 

  • Jussila MM, Zhao J, Suominen L, Lindstrom K (2007) Tol plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. FEMS Microbiol Ecol 146:510–524

    CAS  Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals, vol 19. Springer, Berlin/Heidelberg, 31–64

    Google Scholar 

  • Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Harte PG, Zuberer DR (eds) Principles and applications of soil microbiology. Prentice Hall, New Jersey, pp 389–407

    Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    Article  CAS  PubMed  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2004) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  CAS  Google Scholar 

  • Kroer N, Barkay T, Sørensen S, Weber D (1998) Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol Ecol 25(4):375–384

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bharagava RM, Kumar M, Singh SK, Govind K (2013) Enhanced biodegradation of Mobil oil hydrocarbons by bipiosurfactant producing bacterial consortium in wheat and mustard rhizosphere. J Pet Environ Biotechnol 4:5

    Google Scholar 

  • Kwak Y, Bakker PAHM, Glandorf DCM, Topham J, Paulitz T, Weller DM (2009) Diversity, virulence and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington State. Phytopathology 99:472–479

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazardous Substance Res 2:1–25

    Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth promoting rhizobacteria Serratia marcescens NBR11213. Curr Microbiol 52:363–368

    Article  CAS  PubMed  Google Scholar 

  • LeFevre GH, Hozalski RM, Novak PJ (2013) Root exudate enhanced contaminant desorption: an abiotic contribution to the rhizosphere effect. Environ Sci Technol 47:11545–11553

    Article  CAS  PubMed  Google Scholar 

  • Leigh GJ (2002) Nitrogen fixation at the millennium. Elsevier Science, London

    Google Scholar 

  • Ling W, Sun R, Gao X, Xu R, Li H (2015) Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. Eur J Soil Sci 66:339–347

    Article  CAS  Google Scholar 

  • Ling J, Wang H, Wu P, Li T, Tang Y, Naseer N, Zheng H, Masson-Boinin C, Zhong Z, Zhu J (2016) Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. PNAS 113:13875–13880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Jianteng S, Zhu L (2017) The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 7:7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determination of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat and influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Mahdavi A, Khermandar K, Ahmady A, Tabaraki R (2014) Lead accumulation potential in Acacia victoria. Int J Phytoremediation 16:582–592

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Sig Behav 5:359–368

    Article  CAS  Google Scholar 

  • Martin JD, Crawford CG, Larson SJ (2003) Pesticides in streams: summary statistics; preliminary results from cycle I of the National Water Quality Assessment Program (NAWQA), 1992–2001, U.S. Geological Survey. http://ca.water.usgs.gov.pnsp/pestsw/Pest-SW_2001_Text.html

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  PubMed  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2004) Assessment of tropical grasses and legumes for phytoremediation of petroleum contaminated soils. Water Air Soil Pollut 165:195–209

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Arias M (2006) Effect of the tropical grass Brachiaria brizantha (Hochst. Ex A. Rich.) Stapf on microbial population and activity in petroleum contaminated soil. Microbiol Res 161:80–91

    Article  CAS  PubMed  Google Scholar 

  • Mølbak L, Molin S, Kroer N (2007) Root growth and exudate production define the frequency of horizontal plasmid transfer in the rhizosphere. FEMS Microbiol Ecol 59(1):167–176

    Article  CAS  PubMed  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  CAS  PubMed  Google Scholar 

  • Muratova A, Golubeva S, Wittenmayer L, Dmitrievaa T, Bondarenkovaa A, Hircheb F, Merbach W, Turkovskayaa O (2009) Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot 66:514–521

    Article  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Phys 132:146–153

    Article  CAS  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attracts Pseudomonas putida to the rhizosphere. PLoS One 7:e35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisenbaum M, Hernan Sendra G, Cerda Gilbert GA, Scagliola M, Froilan Gonzalez J, Elena Murialdo S (2013) Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration. J Environ Sci China 25:613–625

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Ann Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world. IntechOpen, Croatia. https://doi.org/10.5772/17686

  • Powell JF, Vargas JM, Nair MG, Detweiler AR, Chandra A (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–24

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260

    Google Scholar 

  • Rajaei S, Seyedi SM, Raiesi F, Shiran B, Raheb J (2013) Characterization and potentials of indigenous oil degrading bacteria inhabiting the rhizosphere of wild oat (Avena Fatua L.) in south west of Iran. Iran J Biotechnol 11(1):32–40. https://doi.org/10.5812/ijb.9334

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rodríguez R, Vassilev N, Azcón R (1999) Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially treated sugar beet waste. Appl Soil Ecol 11:9–15

    Article  Google Scholar 

  • Rohrbacher F, St-Arnaud M (2016) Root exudation: the ecological driver of hydrocarbon rhizoremediation. Agronomy 6:19

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena J, Amita S, Indu R, Shalini C, Veena G (2015) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum) J. Crop Improv 29:353–369

    Article  CAS  Google Scholar 

  • Scragg A (2006) Environmental biotechnology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root Engineering, vol 40. Springer-Verlag, Berlin Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Bisht S, Kumar V (2013) Rhizoremediation: a promising rhizosphere technology. In: Patil BY, Rao P (eds) Applied bioremediation - active and passive approaches. InTech. Open Science Publishers, Croatia, pp 333–352 ISBN 978-953-51-1200-6. https://doi.org/10.5772/56905

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Google Scholar 

  • Somtrakoon K, Chouychai W, Lee H (2014) Phytoremediation of anthracene and fluoranthene contaminated soil by Luffa acutangula. Maejo Int J Sci Technol 8:221–231

    Google Scholar 

  • Smith MJ, Flowers TA, Duncan HJ, Adler J (2006) Effect of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI (2002) Nodulation in legumes. Royal Botanic Gardens, Kew

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stokes HS, Seager SL (eds) (1976) Oil pollution and environmental chemistry of air and water pollution. Oxford University, Oxford

    Google Scholar 

  • Strobel KL, McGowan S, Bauer RD, Griebler C, Liu J, Ford RM (2011) Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm. Biotechnol Bioeng 108:2070–2077

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Nickel-resistance-based minitransposons: new tools for genetic manipulation of environmental bacteria. Appl Environ Microbiol 71:8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tak HI, Ahmad F, Babalola O (2013) Advances in the application of plant growth promoting rhizobacteria in phytoremediation of heavy metals. In: Whitacre DM (ed) Volume 223 reviews of environmental contamination and toxicology. Springer, New York, pp 33–52

    Chapter  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of phenanzin antibiotic from Pseudomonas flourescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiedje Lab–Project (2006) Center for microbial ecology. Michigan State University, Michigan

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisneiwki-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356 /1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol 157:525–537

    Article  PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition plant nutrition in a world of declining renewable resource. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230

    Article  CAS  Google Scholar 

  • Vicre M, Santaella C, Blanchet S, Gateau A, Driouich A (2005) Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138:998–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kou S, Jiang Q, Xu B, Liu X, Xiao J et al (2014) Factors affecting transfer of degradative plasmids between bacteria in soils. Appl Soil Ecol 84:254–261

    Article  Google Scholar 

  • Wauna RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network ISRN Ecology Volume 2011, Article Id: 402647, 20 p. https://doi.org/10.5402/2011/402647

  • Wei Y, Hou H, ShangGuan YX, Li JN, Li FS (2014) Genetic diversity of endophytic bacteria of the manganesehyperaccumulating plant Phytolacca americana growing at a manganese mine. Eur J Soil Biol 62:15–21

    Google Scholar 

  • Wen FS, Van Etten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Mathesius U (2014) Root exudation: the role of secondary metabolites, their localization in roots and transport into the rhizosphere. In: Morte A, Varma A (eds) Root Engineering: Basic and Applied Concepts. Springer, Berlin, pp 221–247

    Google Scholar 

  • Whipps JM (1997) Development in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interaction and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Wu L, Wang J, Huang W, Wu H, Chen J, Yang Y, Zhang Z, Lin W (2015) Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture. Sci Rep 5:15871–15882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Crowley DE (1999) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  Google Scholar 

  • Yang S, Jin H, Wei Z, He R, Ji Y, Li X, Yu S (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381

    Google Scholar 

  • Zarcinas BA, Pongsakul P, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in southeast Asia. 2. Thailand. Environ Geochem Health 26:359–371

    Article  CAS  PubMed  Google Scholar 

  • Zhou JZ, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou AF, He ZL, Van Nostrand JD, Hazen TC, Stahl DA (2012) How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 9:452–466

    Google Scholar 

  • Zhou XG, Wu FZ (2012) P-coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.Sp cucumerinum owen. PLoS One 7:e48288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XG, Wu FZ (2013) Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus 1.). Can J Soil Sci 93:13–21

    Article  CAS  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riskuwa-Shehu, M.L., Ijah, U.J.J. (2018). Rhizospheric Microbe-Plant Exudate Formulation for Enhanced Restoration of Contaminated Agricultural Soil. In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_12

Download citation

Publish with us

Policies and ethics