Skip to main content

Resveratrol: A Miracle Drug for Vascular Pathologies

  • Chapter
  • First Online:

Abstract

Cardiovascular diseases (CVDs) are multifactorial noncommunicable diseases that are responsible for most prominent health problems worldwide in the twenty-first century. The genetic factors, environmental factors, change in diet, lifestyle, lack of physical activities, stress, and high blood pressure are the key risk factors for CVDs, and diseases like diabetes also contribute to the progression of CVDs. Platelet aggregation, vascular endothelial dysfunction, and imbalance in nitric oxide (NO) levels are the key events in cardiovascular pathologies that results in inflammation and oxidative stress that ultimately leads to death. To counteract the pathogenicity of CVDs, the use of phytochemicals is advancing as the conventional drugs have multiple side effects. Experimental demonstrations have showed that phytochemicals exhibit numerous cardioprotective properties with limited side effects. This chapter is focused on the use of resveratrol (3,5,4′-trihydroxystilbene), a phytochemical well known for its cardioprotective, antioxidant, anti-inflammatory, anti-atherosclerotic properties in vitro and in vivo. Existing systemic studies revealed that resveratrol could target various signaling pathways associated with cell growth and proliferation, inflammation, and mitochondrial functioning by modulating PGC-1α and SIRT-1 activity and also improves remodeling in the heart by activating adenosine monophosphate kinase (AMPK). Resveratrol can act as an inhibitor of migration and proliferation of aortic vascular smooth muscle cell by decreasing the cross talk between an inducer of matrix metalloproteinases (MMPs) and IL-18. Resveratrol improves the systolic performance of heart by regulating diastolic function and thus prevents heart failure risk. Scientific literature shows that the use of resveratrol as miracle drug for vascular pathogenesis can revamp cardiac health which will shed light on the path to make treatment strategies for medication of vascular-related disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Laslett LJ et al (2012) The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol 60(25):S1–S49

    Article  PubMed  Google Scholar 

  2. World Health Organization (2014) Global status report on alcohol and health 2014. World Health Organization, Geneva

    Google Scholar 

  3. Pearson TA et al (2003) Markers of inflammation and cardiovascular disease. Circulation 107(3):499–511

    Article  PubMed  Google Scholar 

  4. Lippi G et al (2010) Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox”. In: Seminars in thrombosis and hemostasis. Thieme Medical Publishers, New York

    Google Scholar 

  5. Ramesh Vidavalur M et al (2006) Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 11(3):217–225

    PubMed  PubMed Central  Google Scholar 

  6. Ballini A et al (2017) Resveratrol in vascular diseases and therapeutics. Vasc Dis Ther 2:1–2

    Google Scholar 

  7. Zhu L, Luo X, Jin Z (2008) Effect of resveratrol on serum and liver lipid profile and antioxidant activity in hyperlipidemia rats. Asian Aust J Animal Sci 21(6):890

    Article  CAS  Google Scholar 

  8. Borriello A et al (2010) Dietary polyphenols: focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis 20(8):618–625

    Article  CAS  PubMed  Google Scholar 

  9. Bonnefont-Rousselot D (2016) Resveratrol and cardiovascular diseases. Nutrients 8(5):250

    Article  PubMed Central  CAS  Google Scholar 

  10. Tomé-Carneiro J et al (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72:69–82

    Article  PubMed  CAS  Google Scholar 

  11. Szkudelski T, Szkudelska K (2011) Anti-diabetic effects of resveratrol. Ann NY Acad Sci 1215(1):34–39

    Article  CAS  PubMed  Google Scholar 

  12. Vallianou NG et al (2015) Resveratrol and cancer. Hosp Chron 10(3):137

    Google Scholar 

  13. Collaboration, P.S. (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349):1903–1913

    Article  Google Scholar 

  14. Gareth B, Lip GY, O’Brien E (2001) The ABC of hypertension: the pathophysiology of hypertension. BMJ 322:912–916

    Article  Google Scholar 

  15. Tzourio C (2007) Hypertension, cognitive decline, and dementia: an epidemiological perspective. Dialogues Clin Neurosci 9(1):61–70

    PubMed  PubMed Central  Google Scholar 

  16. Franklin SS (2005) Arterial stiffness and hypertension. Hypertension 45(3):349–351

    Article  CAS  PubMed  Google Scholar 

  17. Park S, Lakatta EG (2012) Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Med J 53(2):258–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rudijanto A (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 39(2):86–93

    PubMed  Google Scholar 

  19. Kitulwatte ID, Pollanen MS (2015) A comparative study of coronary atherosclerosis in young and old. Am J Forensic Med Pathol 36(4):323–326

    Article  PubMed  Google Scholar 

  20. van Oijen M et al (2007) Atherosclerosis and risk for dementia. Ann Neurol 61(5):403–410

    Article  PubMed  Google Scholar 

  21. Heeringa J et al (2007) Subclinical atherosclerosis and risk of atrial fibrillation: the Rotterdam study. Arch Intern Med 167(4):382–387

    Article  PubMed  Google Scholar 

  22. Yasaka M, Yamaguchi T, Shichiri M (1993) Distribution of atherosclerosis and risk factors in atherothrombotic occlusion. Stroke 24(2):206–211

    Article  CAS  PubMed  Google Scholar 

  23. Klein R et al (2002) The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes: the atherosclerosis risk in communities study. Ophthalmology 109(7):1225–1234

    Article  PubMed  Google Scholar 

  24. Casserly I, Topol EJ (2004) Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 363(9415):1139–1146

    Article  CAS  PubMed  Google Scholar 

  25. Befeler B et al (1977) Coronary artery aneurysms: study of their etiology, clinical course and effect on left ventricular function and prognosis. Am J Med 62(4):597–607

    Article  CAS  PubMed  Google Scholar 

  26. Kaneko H et al (2011) Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization. Atherosclerosis 217(2):350–357

    Article  CAS  PubMed  Google Scholar 

  27. Rijbroek A et al (1994) Inflammation of the abdominal aortic aneurysm wall. Eur J Vasc Surg 8(1):41–46

    Article  CAS  PubMed  Google Scholar 

  28. Cohen P, O’Gara PT (2008) Coronary artery aneurysms: a review of the natural history, pathophysiology, and management. Cardiol Rev 16(6):301–304

    Article  PubMed  Google Scholar 

  29. Brown TJ et al (2001) CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J Infect Dis 184(7):940–943

    Article  CAS  PubMed  Google Scholar 

  30. He R et al (2006) Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg 131(3):671–678 e2

    Article  PubMed  Google Scholar 

  31. Szekanecz Z et al (1994) Human atherosclerotic abdominal aortic aneurysms produce interleukin (IL)-6 and interferon-gamma but not IL-2 and IL-4: the possible role for IL-6 and interferon-gamma in vascular inflammation. Inflamm Res 42(3):159–162

    CAS  Google Scholar 

  32. Koch A et al (1993) Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am J Pathol 142(5):1423

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shimizu K et al (2004) Th2-predominant inflammation and blockade of IFN-γ signaling induce aneurysms in allografted aortas. J Clin Invest 114(2):300–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parry DJ et al (2010) Markers of inflammation in men with small abdominal aortic aneurysm. J Vasc Surg 52(1):145–151

    Article  PubMed  Google Scholar 

  35. Radonic T et al (2012) Inflammation aggravates disease severity in Marfan syndrome patients. PLoS One 7(3):e32963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nataatmadja M et al (2003) Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in Marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm. Circulation 108(10 suppl 1):II-329–II-334

    Google Scholar 

  37. Wang Y et al (2010) TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II–infused mice. J Clin Invest 120(2):422–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anahita Dua M et al (2013) A review of the role of platelets in vascular trauma patients compared to patients with chronic vascular disease. Vasc Dis Manag 10(11):E240–E243

    Google Scholar 

  39. Reinhart W (2013) Platelets in vascular disease. Clin Hemorheol Microcirc 53(1–2):71–79

    CAS  PubMed  Google Scholar 

  40. van der Loo B, Martin JF (1997) 6 megakaryocytes and platelets in vascular disease. Baillieres Clin Haematol 10(1):109–123

    Article  PubMed  Google Scholar 

  41. Schmidt-Ott KM, Kagiyama S, Phillips MI (2000) The multiple actions of angiotensin II in atherosclerosis. Regul Pept 93(1):65–77

    Article  CAS  PubMed  Google Scholar 

  42. Pacurari M et al (2014) The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014:1

    Article  CAS  Google Scholar 

  43. Arehart E et al (2007) Prostacyclin, atherothrombosis, and cardiovascular disease. Curr Med Chem 14(20):2161–2169

    Article  CAS  PubMed  Google Scholar 

  44. Nagaya N (2010) Orally active prostacyclin analogue for cardiovascular disease. Int Angiol: J Int Union Angiol 29(2 Suppl):14–18

    CAS  Google Scholar 

  45. Böhm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76(1):8–18

    Article  PubMed  CAS  Google Scholar 

  46. Agapitov AV, Haynes WG (2002) Role of endothelin in cardiovascular disease. J Renin-Angiotensin-Aldosterone Syst 3(1):1–15

    Article  CAS  PubMed  Google Scholar 

  47. Qing P et al (2015) Association of big endothelin-1 with coronary artery calcification. PLoS One 10(11):e0142458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chester AH, Yacoub MH (2014) The role of endothelin-1 in pulmonary arterial hypertension. Glob Cardiol Sci Pract 2014:29

    Article  Google Scholar 

  49. Kuhn H et al (2013) The role of endothelin in stroke. Issues 7(1)

    Google Scholar 

  50. Schaller BJ (2006) The role of endothelin in stroke: experimental data and underlying pathophysiology. Arch Med Sci 2(3):146

    CAS  Google Scholar 

  51. Li H, Förstermann U (2013) Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol 13(2):161–167

    Article  PubMed  CAS  Google Scholar 

  52. Scheuner MT (2001) Genetic predisposition to coronary artery disease. Curr Opin Cardiol 16(4):251–260

    Article  CAS  PubMed  Google Scholar 

  53. Wilde AA, Behr ER (2013) Genetic testing for inherited cardiac disease. Nat Rev Cardiol 10(10):571–583

    Article  CAS  PubMed  Google Scholar 

  54. Enstrom JE, Kabat GC (2006) Environmental tobacco smoke and coronary heart disease mortality in the United States—a meta-analysis and critique. Inhal Toxicol 18(3):199–210

    Article  CAS  PubMed  Google Scholar 

  55. Sauvant M-P, Pepin D (2002) Drinking water and cardiovascular disease. Food Chem Toxicol 40(10):1311–1325

    Article  CAS  PubMed  Google Scholar 

  56. Lee B-J, Kim B, Lee K (2014) Air pollution exposure and cardiovascular disease. Cardiovasc Dis 3:24

    Google Scholar 

  57. Eriksson C et al (2007) Aircraft noise and incidence of hypertension. Epidemiology 18(6):716–721

    Article  PubMed  Google Scholar 

  58. Momeni M et al (2014) Does water hardness have preventive effect on cardiovascular disease? Int J Prev Med 5(2):159

    PubMed  PubMed Central  Google Scholar 

  59. Tsuji JS et al (2014) Association of low-level arsenic exposure in drinking water with cardiovascular disease: a systematic review and risk assessment. Toxicology 323:78–94

    Article  CAS  PubMed  Google Scholar 

  60. James KA et al (2015) Association between lifetime exposure to inorganic arsenic in drinking water and coronary heart disease in Colorado residents. Environ Health Perspect (Online) 123(2):128

    Article  CAS  Google Scholar 

  61. Maria AG, Graziano R, Nicolantonio DO (2015) Carotenoids: potential allies of cardiovascular health? Food Nutr Res 59(1):26762c

    Article  CAS  Google Scholar 

  62. Dhiman M et al (2015) Oxidative stress and inflammation in cardiovascular diseases: two sides of the same coin. In: Free radicals in human health and disease. Springer, New Delhi, pp 259–278

    Google Scholar 

  63. Si H, Liu D (2009) Isoflavone genistein protects human vascular endothelial cells against tumor necrosis factor-α-induced apoptosis through the p38β mitogen-activated protein kinase. Apoptosis 14(1):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Babu PVA et al (2012) Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J Nutr 142(4):724–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shen Y et al (2013) Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1. Free Radic Biol Med 65:908–915

    Article  CAS  PubMed  Google Scholar 

  66. Tangney CC, Rasmussen HE (2013) Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15(5):324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Evans PC (2011) The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. EPMA J 2(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  68. Si H, Liu D (2007) Phytochemical genistein in the regulation of vascular function: new insights. Curr Med Chem 14(24):2581–2589

    Article  CAS  PubMed  Google Scholar 

  69. Agarwal M et al (2012) Dynamic action of carotenoids in cardioprotection and maintenance of cardiac health. Molecules 17(4):4755–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thimmulappa RK et al (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    CAS  PubMed  Google Scholar 

  71. Khurana S et al (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5(10):3779–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alwi I et al (2008) The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med Indones 40(4):201–210

    PubMed  Google Scholar 

  73. Li Y (2011) Protective effects of curcumin on brain vascular dementia by chronic cerebral ischemia in rats and study of the molecular mechanism. Alzheimers Dement 7((4):e47–e48

    Article  Google Scholar 

  74. Zhirongwang YH et al (2002) Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int J Mol Med 9:77–79

    Google Scholar 

  75. Shenouda SM, Vita JA (2007) Effects of flavonoid-containing beverages and EGCG on endothelial function. J Am Coll Nutr 26(4):366S–372S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Loke WM et al (2008) Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88(4):1018–1025

    Article  CAS  PubMed  Google Scholar 

  77. Gómez-Guzmán M et al (2012) Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med 52(1):70–79

    Article  PubMed  CAS  Google Scholar 

  78. Zou J et al (2000) Effects of resveratrol on oxidative modification of human low density lipoprotein. Chin Med J 113(2):99–102

    CAS  PubMed  Google Scholar 

  79. Csiszar A et al (2006) Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells: role of NF-κB inhibition. Am J Phys Heart Circ Phys 291(4):H1694–H1699

    CAS  Google Scholar 

  80. Li Y, Cao Z, Zhu H (2006) Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol Res 53(1):6–15

    Article  CAS  PubMed  Google Scholar 

  81. Ungvari Z et al (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Phys Heart Circ Phys 299(1):H18–H24

    CAS  Google Scholar 

  82. Ungvari Z et al (2007) Resveratrol increases vascular oxidative stress resistance. Am J Phys Heart Circ Phys 292(5):H2417–H2424

    CAS  Google Scholar 

  83. Renaud Sd, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526

    Article  CAS  PubMed  Google Scholar 

  84. Gambini J et al (2015) Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Med Cell Longev 2015:1

    Article  CAS  Google Scholar 

  85. Bernard E, Britz-McKibbin P, Gernigon N (2007) Resveratrol photoisomerization: an integrative guided-inquiry experiment. J Chem Educ 84(7):1159

    Article  CAS  Google Scholar 

  86. Giovinazzo G et al (2012) Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. Plant Foods Hum Nutr 67(3):191–199

    Article  CAS  PubMed  Google Scholar 

  87. Keylor MH, Matsuura BS, Stephenson CR (2015) Chemistry and biology of resveratrol-derived natural products. Chem Rev 115(17):8976–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. He S, Yan X (2013) From resveratrol to its derivatives: new sources of natural antioxidant. Curr Med Chem 20(8):1005–1017

    CAS  PubMed  Google Scholar 

  89. Urpí-Sardà M et al (2005) Uptake of diet resveratrol into the human low-density lipoprotein. Identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry. Anal Chem 77(10):3149–3155

    Article  PubMed  CAS  Google Scholar 

  90. Cottart CH et al (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54(1):7–16

    Article  CAS  PubMed  Google Scholar 

  91. Boocock DJ et al (2007) Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Prev Biomark 16(6):1246–1252

    Article  CAS  Google Scholar 

  92. Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci 1215(1):9–15

    Article  CAS  PubMed  Google Scholar 

  93. Walle T et al (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32(12):1377–1382

    Article  CAS  PubMed  Google Scholar 

  94. Yu C et al (2002) Human, rat, and mouse metabolism of resveratrol. Pharm Res 19(12):1907–1914

    Article  CAS  PubMed  Google Scholar 

  95. Johnson JJ et al (2011) Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res 55(8):1169–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Santi C et al (2000) Glucuronidation of resveratrol, a natural product present in grape and wine, in the human liver. Xenobiotica 30(11):1047–1054

    Article  PubMed  Google Scholar 

  97. De Santi C et al (2000) Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids. Xenobiotica 30(9):857–866

    Article  PubMed  Google Scholar 

  98. Biasutto L, Zoratti M (2014) Prodrugs of quercetin and resveratrol: a strategy under development. Curr Drug Metab 15(1):77–95

    Article  CAS  PubMed  Google Scholar 

  99. Smoliga JM, Blanchard O (2014) Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules 19(11):17154–17172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Wang S et al (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25(4):363–376

    Article  CAS  PubMed  Google Scholar 

  101. Delmas D, Solary E, Latruffe N (2011) Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr Med Chem 18(8):1100–1121

    Article  CAS  PubMed  Google Scholar 

  102. Casanova F et al (2012) Resveratrol chemosensitizes breast cancer cells to melphalan by cell cycle arrest. J Cell Biochem 113(8):2586–2596

    Article  CAS  PubMed  Google Scholar 

  103. Varoni EM et al (2016) Anticancer molecular mechanisms of resveratrol. Front Nutr 3:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gülçin İ (2010) Antioxidant properties of resveratrol: a structure–activity insight. Innovative Food Sci Emerg Technol 11(1):210–218

    Article  CAS  Google Scholar 

  105. Donnelly LE et al (2004) Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Phys Lung Cell Mol Phys 287(4):L774–L783

    CAS  Google Scholar 

  106. Das S, Das DK (2007) Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets (Form Curr Drug Targets Inflamm Allergy) 6(3):168–173

    Article  CAS  Google Scholar 

  107. Ungvari Z et al (2011) Mitochondrial protection by resveratrol. Exerc Sport Sci Rev 39(3):128

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bhat KP, Kosmeder JW, Pezzuto JM (2001) Biological effects of resveratrol. Antioxid Redox Signal 3(6):1041–1064

    Article  CAS  PubMed  Google Scholar 

  109. Yang T et al (2015) Properties and molecular mechanisms of resveratrol: a review. Die Pharmazie-Int J Pharm Sci Res 70(8):501–506

    CAS  Google Scholar 

  110. De Lorgeril M et al (2002) Mediterranean diet and the French paradox. Cardiovasc Res 54(3):503–515

    Article  PubMed  Google Scholar 

  111. Novakovic A et al (2006) The mechanism of endothelium-independent relaxation induced by the wine polyphenol resveratrol in human internal mammary artery. J Pharmacol Sci 101(1):85–90

    Article  CAS  PubMed  Google Scholar 

  112. Jäger U, Nguyen-Duong H (1999) Relaxant effect of trans-resveratrol on isolated porcine coronary arteries. Arzneimittelforschung 49(03):207–211

    PubMed  Google Scholar 

  113. Silan C (2008) The effects of chronic resveratrol treatment on vascular responsiveness of streptozotocin-induced diabetic rats. Biol Pharm Bull 31(5):897–902

    Article  CAS  PubMed  Google Scholar 

  114. Gojković-Bukarica L et al (2013) Cardiovascular effects of resveratrol. Vojnosanit Pregl 70(12):1145–1150

    Article  Google Scholar 

  115. Reuter S et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spanier G et al (2009) Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol 60(Suppl 4):111–116

    PubMed  Google Scholar 

  117. Wong R et al (2011) Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr Metab Cardiovasc Dis 21(11):851–856

    Article  CAS  PubMed  Google Scholar 

  118. Shen MY et al (2007) Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. Br J Haematol 139(3):475–485

    CAS  PubMed  Google Scholar 

  119. Wang H et al (2012) Resveratrol in cardiovascular disease: what is known from current research? Heart Fail Rev 17(3):437–448

    Article  CAS  PubMed  Google Scholar 

  120. Gresele P et al (2008) Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production. J Nutr 138(9):1602–1608

    Article  CAS  PubMed  Google Scholar 

  121. Mader I et al (2010) Identification of a novel proapoptotic function of resveratrol in fat cells: SIRT1-independent sensitization to TRAIL-induced apoptosis. FASEB J 24(6):1997–2009

    Article  CAS  PubMed  Google Scholar 

  122. Weber O et al (2010) Cholesteryl ester transfer protein and its inhibition. Cell Mol Life Sci 67(18):3139–3149

    Article  CAS  PubMed  Google Scholar 

  123. Grover-Páez F, Zavalza-Gómez AB (2009) Endothelial dysfunction and cardiovascular risk factors. Diabetes Res Clin Pract 84(1):1–10

    Article  PubMed  CAS  Google Scholar 

  124. Dohadwala MM, Vita JA (2009) Grapes and cardiovascular disease. J Nutr 139(9):1788S–1793S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Das DK, Mukherjee S, Ray D (2010) Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev 15(5):467–477

    Article  CAS  PubMed  Google Scholar 

  126. Dolinsky VW et al (2009) Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 119(12):1643–1652

    Article  CAS  PubMed  Google Scholar 

  127. Xin P et al (2010) Favorable effects of resveratrol on sympathetic neural remodeling in rats following myocardial infarction. Eur J Pharmacol 649(1):293–300

    Article  CAS  PubMed  Google Scholar 

  128. Pagliaro B et al (2015) Phytochemical compounds and protection from cardiovascular diseases: a state of the art. Biomed Res Int 2015:1

    Article  CAS  Google Scholar 

  129. Noga AA et al (2007) Expression of an active LKB1 complex in cardiac myocytes results in decreased protein synthesis associated with phenylephrine-induced hypertrophy. Am J Phys Heart Circ Phys 292(3):H1460–H1469

    CAS  Google Scholar 

  130. Venkatesan B et al (2009) Resveratrol blocks interleukin-18-EMMPRIN cross-regulation and smooth muscle cell migration. Am J Physiol Heart Circ Physiol 297(2):H874–H886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang Z et al (2006) Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts. Biochem Biophys Res Commun 346(1):367–376

    Article  CAS  PubMed  Google Scholar 

  132. Gurusamy N et al (2010) Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium. J Cell Mol Med 14(9):2235–2239

    Article  PubMed  PubMed Central  Google Scholar 

  133. Raj P, Zieroth S, Netticadan T (2015) An overview of the efficacy of resveratrol in the management of ischemic heart disease. Ann N Y Acad Sci 1348(1):55–67

    Article  CAS  PubMed  Google Scholar 

  134. Mukhopadhyay P et al (2010) Restoration of altered microRNA expression in the ischemic heart with resveratrol. PLoS One 5(12):e15705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lancon A et al (2012) Control of MicroRNA expression as a new way for resveratrol to deliver its beneficial effects. J Agric Food Chem 60(36):8783–8789

    Article  CAS  PubMed  Google Scholar 

  136. Ungvari Z et al (2013) Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol Ser A Biol Med Sci 68(8):877–891

    Article  CAS  Google Scholar 

  137. Lopez MS, Dempsey RJ, Vemuganti R (2016) Resveratrol preconditioning induces cerebral ischemic tolerance but has minimal effect on cerebral microRNA profiles. J Cereb Blood Flow Metab 36(9):1644–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tanko Y et al (2016) Resveratrol protects rabbits against cholesterol diet-induced hyperlipidaemia. Niger J Physiol Sci 31(1):71–75

    CAS  PubMed  Google Scholar 

  139. Mendes KL et al (2016) Distinct metabolic effects of resveratrol on lipogenesis markers in mice adipose tissue treated with high-polyunsaturated fat and high-protein diets. Life Sci 153:66–73

    Article  CAS  PubMed  Google Scholar 

  140. Lima LM, Carvalho MDG, Sousa MO (2007) Apo B/apo AI ratio and cardiovascular risk prediction. Arq Bras Cardiol 88(6):e187–e190

    Article  PubMed  Google Scholar 

  141. Csiszar A et al (2009) Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 54(3):668–675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

S.U., K.B.G. acknowledges the financial support from ICMR (New Delhi). Rubal and S. Kaur acknowledges UGC (New Delhi) for RGNF-JRF. S. Kumar is supported by the CUPB institutional fellowship for PhD. AKM acknowledges the Alzheimer’s Association, USA (NIRG-11-203527), and M.D. acknowledges the DST (Fast-Track: (SB/YS/LS-107/2013). Because of the limited focus of the manuscript, many appropriate references could not be included, for which the authors apologize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monisha Dhiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, S. et al. (2018). Resveratrol: A Miracle Drug for Vascular Pathologies. In: Rani, V., Yadav, U. (eds) Functional Food and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-1123-9_7

Download citation

Publish with us

Policies and ethics