Skip to main content

Phytochemicals and Human Health

  • Chapter
  • First Online:
Functional Food and Human Health

Abstract

The World Health Organization (WHO) defined health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” Any disturbance in this well-being leads to ill-health and a related condition called pathophysiology. Disease conditions, xenobiotics, and environmental and social stresses are the most common causes behind these pathophysiological conditions, and this can be generalized from recent studies that in most of the cases ROS plays the pivotal role as the main effector. However, fortunately in many cases, these health problems are preventable. Reasonable cost, presence in the daily consumables, and negligible side effects make the naturally occurring plant-derived compounds interesting and attractive for pharmacological study in recent years. Primarily for the defense purpose, plants yield assorted types of low-molecular-weight products. These are generally termed as phytochemicals. Among them, a group of secondary metabolites associated with a polyphenolic group have been named flavonoids and are of pronounced interest due to their implausible pharmacological properties. Flavonoids are widely accepted as potent antioxidant agents which can prevent injury caused by free radicals by scavenging of ROS, activation of antioxidant enzymes, and inhibiting oxidases. In addition, increase in antioxidant properties of low-molecular antioxidants, metal chelating activity, and reduction of α-tocopheryl radicals and mitigation of oxidative stress caused by NO also plays important role. In this chapter, we have summarized most of the findings, if not all, available till date related to five very noticeable phytochemicals, namely, morin, quercetin, rutin, mangiferin, and myricetin. Hope this chapter will help readers in understanding the utmost importance of the phytochemicals and will motivate them to further dig into the mechanistic study to fetch more novel information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha K, Sadhukhan P, Saha S, Pal PB, Sil PC (2015) Morin protects gastric mucosa from nonsteroidal anti-inflammatory drug, indomethacin induced inflammatory damage and apoptosis by modulating NF-kappaB pathway. Biochim Biophys Acta 1850:769–783

    Article  CAS  PubMed  Google Scholar 

  2. Basile A, Sorbo S, Giordano S, Ricciardi L, Ferrara S, Montesano D, Castaldo Cobianchi R, Vuotto ML, Ferrara L (2000) Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71(Suppl 1):S110–S116

    Article  CAS  PubMed  Google Scholar 

  3. Sinha K, Ghosh J, Sil PC (2016) Morin and its role in chronic diseases. Adv Exp Med Biol 928:453–471

    Article  CAS  PubMed  Google Scholar 

  4. Gottlieb M, Leal-Campanario R, Campos-Esparza MR, Sanchez-Gomez MV, Alberdi E, Arranz A, Delgado-Garcia JM, Gruart A, Matute C (2006) Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis 23:374–386

    Article  CAS  PubMed  Google Scholar 

  5. Zeng N, Tong B, Zhang X, Dou Y, Wu X, Xia Y, Dai Y, Wei Z (2015) Antiarthritis effect of morin is associated with inhibition of synovial angiogensis. Drug Dev Res 76(8):463–473

    Article  CAS  PubMed  Google Scholar 

  6. Subash S, Subramanian P (2012) Chronotherapeutic effect of morin in experimental chronic hyperammonemic rats. Int J Nutr Pharmacol Neurol Dis 2:266

    Article  CAS  Google Scholar 

  7. Amo-Barimah A, Woode E, Boakye-Gyasi E, Ainooson G, Abotsi W (2010) Antiarthritic and antioxidant effects of the leaf extract of Ficus exasperata P. Beauv (Moraceae). Pharm Res 2:89. https://doi.org/10.4103/0974-8490.62958

    Article  Google Scholar 

  8. Sultana F, Rasool M (2015) A novel therapeutic approach targeting rheumatoid arthritis by combined administration of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin with reference to pro-inflammatory cytokines, inflammatory enzymes, RANKL and transcription factors. Chem Biol Interact 230:58–70

    Article  CAS  PubMed  Google Scholar 

  9. Galvez J, Coelho G, Crespo ME, Cruz T, Rodriguez-Cabezas ME, Concha A, Gonzalez M, Zarzuelo A (2001) Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment Pharmacol Ther 15:2027–2039

    Article  CAS  PubMed  Google Scholar 

  10. Hogaboam CM, Jacobson K, Collins SM, Blennerhassett MG (1995) The selective beneficial effects of nitric oxide inhibition in experimental colitis. Am J Phys 268:G673–G684

    CAS  Google Scholar 

  11. Al-Numair KS, Chandramohan G, Alsaif MA (2012) Pretreatment with morin, a flavonoid, ameliorates adenosine triphosphatases and glycoproteins in isoproterenol-induced myocardial infarction in rats. J Nat Med 66:95–101

    Article  CAS  PubMed  Google Scholar 

  12. Prahalathan P, Kumar S, Raja B (2012) Effect of morin, a flavonoid against DOCA-salt hypertensive rats: a dose dependent study. Asian Pac J Trop Biomed 2:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noor H, Cao P, Raleigh DP (2012) Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. Protein Sci 21:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Suriyanarayanan S, Gunasekaran P, Sivasubramanian S, Ramkumar K (2014) Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats. Environ Toxicol Pharmacol 37:326–335

    Article  CAS  PubMed  Google Scholar 

  15. Abuohashish HM, Al-Rejaie SS, Al-Hosaini KA, Parmar MY, Ahmed MM (2013) Alleviating effects of morin against experimentally-induced diabetic osteopenia. Diabetol Metab Syndr 5:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JM, Lee EK, Park G, Kim MK, Yokozawa T, Yu BP, Chung HY (2010) Morin modulates the oxidative stress-induced NF-kappaB pathway through its anti-oxidant activity. Free Radic Res 44:454–461

    Article  CAS  PubMed  Google Scholar 

  17. Fang SH, Hou YC, Chang WC, Hsiu SL, Chao PD, Chiang BL (2003) Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sci 74:743–756

    Article  CAS  PubMed  Google Scholar 

  18. Hsiang CY, Wu SL, Ho TY (2005) Morin inhibits 12-O-tetradecanoylphorbol-13-acetate-induced hepatocellular transformation via activator protein 1 signaling pathway and cell cycle progression. Biochem Pharmacol 69:1603–1611

    Article  CAS  PubMed  Google Scholar 

  19. Kawabata K, Tanaka T, Honjo S, Kakumoto M, Hara A, Makita H, Tatematsu N, Ushida J, Tsuda H, Mori H (1999) Chemopreventive effect of dietary flavonoid morin on chemically induced rat tongue carcinogenesis. Int J Cancer 83:381–386

    Article  CAS  PubMed  Google Scholar 

  20. Thuillier P, Brash AR, Kehrer JP, Stimmel JB, Leesnitzer LM, Yang P, Newman RA, Fischer SM (2002) Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte differentiation by lipoxygenase inhibitors. Biochem J 366:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N, Cetrulo CL, Theoharides TC (2005) Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol 145:934–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen YC, Shen SC, Chow JM, Ko CH, Tseng SW (2004) Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol 25:661–670

    CAS  PubMed  Google Scholar 

  23. Gopal JV (2013) Morin hydrate: botanical origin, pharmacological activity and its applications: a mini-review. Pharm J 5:123–126

    Google Scholar 

  24. Lakhanpal P, Rai DK (2007) Quercetin: a versatile flavonoid. Internet J Med Updat 2:22–37

    Google Scholar 

  25. Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY (2014) Antiartherosclerotic effects of plant flavonoids. Biomed Res Int 2014:480258

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sultana B, Anwar F (2008) Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem 108:879–884

    Article  CAS  PubMed  Google Scholar 

  27. Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10:84–89

    Article  PubMed  PubMed Central  Google Scholar 

  28. Begum AN, Terao J (2002) Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability. J Nutr Biochem 13:265–272

    Article  CAS  PubMed  Google Scholar 

  29. Chun OK, Chung SJ, Claycombe KJ, Song WO (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J Nutr 138:753–760

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Mediavilla V, Crespo I, Collado PS, Esteller A, Sanchez-Campos S, Tunon MJ, Gonzalez-Gallego J (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells. Eur J Pharmacol 557:221–229

    Article  CAS  PubMed  Google Scholar 

  31. Guardia T, Rotelli AE, Juarez AO, Pelzer LE (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56:683–687

    Article  CAS  PubMed  Google Scholar 

  32. Mamani-Matsuda M, Kauss T, Al-Kharrat A, Rambert J, Fawaz F, Thiolat D, Moynet D, Coves S, Malvy D, Mossalayi MD (2006) Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem Pharmacol 72:1304–1310

    Article  CAS  PubMed  Google Scholar 

  33. Askari G, Ghiasvand R, Feizi A, Ghanadian SM, Karimian J (2012) The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J Res Med Sci 17:637–641

    PubMed  PubMed Central  Google Scholar 

  34. Javadi F, Eghtesadi S, Ahmadzadeh A, Aryaeian N, Zabihiyeganeh M, Foroushani AR, Jazayeri S (2014) The effect of quercetin on plasma oxidative status, C-reactive protein and blood pressure in women with rheumatoid arthritis. Int J Prev Med 5:293–301

    PubMed  PubMed Central  Google Scholar 

  35. Ahmad NS, Farman M, Najmi MH, Mian KB, Hasan A (2008) Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout. J Ethnopharmacol 117:478–482

    Article  PubMed  Google Scholar 

  36. Lekakis J, Rallidis LS, Andreadou I, Vamvakou G, Kazantzoglou G, Magiatis P, Skaltsounis AL, Kremastinos DT (2005) Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 12:596–600

    PubMed  Google Scholar 

  37. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411

    Article  CAS  PubMed  Google Scholar 

  38. Chopra M, Fitzsimons PE, Strain JJ, Thurnham DI, Howard AN (2000) Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin Chem 46:1162–1170

    CAS  PubMed  Google Scholar 

  39. Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Muller MJ (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102:1065–1074

    Article  CAS  PubMed  Google Scholar 

  40. Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373:545–549

    Article  CAS  PubMed  Google Scholar 

  41. Park HJ, Yang JY, Ambati S, Della-Fera MA, Hausman DB, Rayalam S, Baile CA (2008) Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 11:773–783

    Article  CAS  PubMed  Google Scholar 

  42. Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F (2005) Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J 386:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82:1032–1039

    Article  CAS  PubMed  Google Scholar 

  44. Choi GN, Kim JH, Kwak JH, Jeong C-H, Jeong HR, Lee U, Heo HJ (2012) Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem 132:1019–1024

    Article  CAS  Google Scholar 

  45. Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. Altern Med Rev J Clin Ther 5:196–208

    CAS  Google Scholar 

  46. Akan Z, Garip AI (2013) Antioxidants may protect cancer cells from apoptosis signals and enhance cell viability. Asian Pac J Cancer Prev 14:4611–4614

    Article  PubMed  Google Scholar 

  47. Vasquez-Garzon VR, Arellanes-Robledo J, Garcia-Roman R, Aparicio-Rautista DI, Villa-Trevino S (2009) Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radic Res 43:128–137

    Article  CAS  PubMed  Google Scholar 

  48. Cruz-Correa M, Shoskes DA, Sanchez P, Zhao R, Hylind LM, Wexner SD, Giardiello FM (2006) Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 4:1035–1038

    Article  CAS  PubMed  Google Scholar 

  49. Han M, Song Y, Zhang X (2016) Quercetin suppresses the migration and invasion in human Colon Cancer Caco-2 cells through regulating toll-like receptor 4/nuclear factor-kappa B pathway. Pharmacogn Mag 12:S237–S244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pratheeshkumar P, Son YO, Divya SP, Wang L, Turcios L, Roy RV, Hitron JA, Kim D, Dai J, Asha P, Zhang Z, Shi X (2016) Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget 8(32):52118

    PubMed  PubMed Central  Google Scholar 

  51. Yang F, Song L, Wang H, Wang J, Xu Z, Xing N (2015) Quercetin in prostate cancer: chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential (Review). Oncol Rep 33:2659–2668

    Article  CAS  PubMed  Google Scholar 

  52. Alarcon De La Lastra C, Martin MJ, Motilva V (1994) Antiulcer and gastroprotective effects of quercetin: a gross and histologic study. Pharmacology 48:56–62

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki Y, Ishihara M, Segami T, Ito M (1998) Anti-ulcer effects of antioxidants, quercetin, alpha-tocopherol, nifedipine and tetracycline in rats. Jpn J Pharmacol 78:435–441

    Article  CAS  PubMed  Google Scholar 

  54. Coles L (2000) Quercetin: a review of clinical applications. Natural medicine Online

    Google Scholar 

  55. Ferry DR, Smith A, Malkhandi J, Fyfe DW, Detakats PG, Anderson D, Baker J, Kerr DJ (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2:659–668

    CAS  PubMed  Google Scholar 

  56. Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC (2010) Quercetin supplementation and upper respiratory tract infection: a randomized community clinical trial. Pharmacol Res 62:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hosseinzadeh H, Nassiri-Asl M (2014) Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Investig 37:783–788

    Article  CAS  Google Scholar 

  58. Sharma S, Ali A, Ali J, Sahni JK, Baboota S (2013) Rutin : therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 22:1063–1079

    Article  CAS  PubMed  Google Scholar 

  59. Al-Dhabi NA, Arasu MV, Park CH, Park SU (2015) An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J 14:59–63

    PubMed  PubMed Central  Google Scholar 

  60. Patil SL, Rao NB, Somashekarappa HM, Rajashekhar KP (2014) Antigenotoxic potential of rutin and quercetin in Swiss mice exposed to gamma radiation. Biom J 37:305–313

    Google Scholar 

  61. Park SE, Sapkota K, Choi JH, Kim MK, Kim YH, Kim KM, Kim KJ, Oh HN, Kim SJ, Kim S (2014) Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem Res 39:707–718

    Article  CAS  PubMed  Google Scholar 

  62. Hsu CY, Shih HY, Chia YC, Lee CH, Ashida H, Lai YK, Weng CF (2014) Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 58:1168–1176

    Article  CAS  PubMed  Google Scholar 

  63. Niture NT, Ansari AA, Naik SR (2014) Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 52:720–727

    PubMed  Google Scholar 

  64. Na JY, Kim S, Song K, Kwon J (2014) Rutin alleviates prion peptide-induced cell death through inhibiting apoptotic pathway activation in dopaminergic neuronal cells. Cell Mol Neurobiol 34:1071–1079

    Article  CAS  PubMed  Google Scholar 

  65. Nieoczym D, Socala K, Raszewski G, Wlaz P (2014) Effect of quercetin and rutin in some acute seizure models in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 54:50–58

    Article  CAS  Google Scholar 

  66. Qu J, Zhou Q, Du Y, Zhang W, Bai M, Zhang Z, Xi Y, Li Z, Miao J (2014) Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion. Br J Pharmacol 171:3702–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ugusman A, Zakaria Z, Chua KH, Nordin NA, Abdullah Mahdy Z (2014) Role of rutin on nitric oxide synthesis in human umbilical vein endothelial cells. ScientificWorldJournal 2014:169370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Choi KS, Kundu JK, Chun KS, Na HK, Surh YJ (2014) Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets. Arch Biochem Biophys 559:38–45

    Article  CAS  PubMed  Google Scholar 

  69. Sikder K, Kesh SB, Das N, Manna K, Dey S (2014) The high antioxidative power of quercetin (aglycone flavonoid) and its glycone (rutin) avert high cholesterol diet induced hepatotoxicity and inflammation in Swiss albino mice. Food Funct 5:1294–1303

    Article  CAS  PubMed  Google Scholar 

  70. Rajendran P, Rengarajan T, Nandakumar N, Divya H, Nishigaki I (2015) Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J Recept Signal Transduct Res 35:76–84

    Article  CAS  PubMed  Google Scholar 

  71. Yang Z, Weian C, Susu H, Hanmin W (2016) Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms. Eur J Pharmacol 771:145–151

    Article  CAS  PubMed  Google Scholar 

  72. Benard O, Chi Y (2015) Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities. Mini-Rev Med Chem 15:582–594

    Article  CAS  PubMed  Google Scholar 

  73. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  PubMed  Google Scholar 

  74. Ghosh M, Das J, Sil PC (2012) D(+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-kappaB and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, mangiferin. Free Radic Res 46:116–132

    Article  CAS  PubMed  Google Scholar 

  75. Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB (2014) Resources and biological activities of natural polyphenols. Nutrients 6:6020–6047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pal PB, Sinha K, Sil PC (2013) Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF-kappaB and mitochondria dependent pathways. PLoS One 8:e56894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saha S, Sadhukhan P, Sil PC (2016a) Mangiferin: a xanthonoid with multipotent anti-inflammatory potential. Biofactors 42:459–474

    Article  CAS  PubMed  Google Scholar 

  78. Selles AJ, Villa DG, Rastrelli L (2015) Mango polyphenols and its protective effects on diseases associated to oxidative stress. Curr Pharm Biotechnol 16:272–280

    Article  PubMed  CAS  Google Scholar 

  79. Menkovic N, Juranic Z, Stanojkovic T, Raonic-Stevanovic T, Savikin K, Zdunic G, Borojevic N (2010) Radioprotective activity of Gentiana lutea extract and mangiferin. Phytother Res 24:1693–1696

    Article  CAS  PubMed  Google Scholar 

  80. Sadhukhan P, Saha S, Sil P (2015) Targeting oxidative stress: a novel approach in mitigating cancer. Biochem Anal Biochem 4. https://doi.org/10.4172/2161-1009.1000236

  81. Apontes P, Liu Z, Su K, Benard O, Youn DY, Li X, Li W, Mirza RH, Bastie CC, Jelicks LA, Pessin JE, Muzumdar RH, Sauve AA, Chi Y (2014) Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63:3626–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marquez L, Garcia-Bueno B, Madrigal JL, Leza JC (2012) Mangiferin decreases inflammation and oxidative damage in rat brain after stress. Eur J Nutr 51:729–739

    Article  CAS  PubMed  Google Scholar 

  83. Pal PB, Ghosh S, Sil PC (2015) Beneficial effect of naturally occurring antioxidants against oxidative stress–mediated organ dysfunctions. In: Bioactive natural products: chemistry and biology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  84. Lim J, Liu Z, Apontes P, Feng D, Pessin JE, Sauve AA, Angeletti RH, Chi Y (2014) Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One 9:e90137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Guo F, Huang C, Liao X, Wang Y, He Y, Feng R, Li Y, Sun C (2011) Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol Nutr Food Res 55:1809–1818

    Article  CAS  PubMed  Google Scholar 

  86. Xing X, Li D, Chen D, Zhou L, Chonan R, Yamahara J, Wang J, Li Y (2014) Mangiferin treatment inhibits hepatic expression of acyl-coenzyme a:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver. Toxicol Appl Pharmacol 280:207–215

    Article  CAS  PubMed  Google Scholar 

  87. Mirza RH, Chi N, Chi Y (2013) Therapeutic potential of the natural product mangiferin in metabolic syndrome. J Nutr Ther 2:74–79

    CAS  Google Scholar 

  88. Asthana RK, Gupta R, Agrawal N, Srivastava A, Chaturvedi U, Kanojiya S, Khanna AK, Bhatia G, Sharma VL (2014) Evaluation of antidyslipidemic effect of mangiferin and amarogentin from Swertia chirayita extract in HFD induced Charles Foster rat model and in vitro antioxidant activity and their docking studies. Int J Pharm Sci Res 5:3734

    Google Scholar 

  89. Saha S, Sadhukhan P, Sinha K, Agarwal N, Sil PC (2016b) Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep 5:313–327

    PubMed  PubMed Central  Google Scholar 

  90. Wolfender J-L, Urbain A, Hostettmann K (2015) Profiling, isolation, chemical characterisation and distribution of Gentianaceae constituents. In: The Gentianaceae-volume 2: biotechnology and applications. Springer, Berlin/Heidelberg

    Google Scholar 

  91. Crockett SL, Poller B, Tabanca N, Pferschy-Wenzig EM, Kunert O, Wedge DE, Bucar F (2011) Bioactive xanthones from the roots of Hypericum perforatum (common St John’s wort). J Sci Food Agric 91:428–434

    Article  CAS  PubMed  Google Scholar 

  92. Abbaskhan A, Siddiqui H, Anjum S, Orhan I, Gurbuz I, Ayanoglud F (2010) New and known constituents from Iris unguicularis and their antioxidant activity. Heterocycles 82:813–824

    Article  CAS  Google Scholar 

  93. Xu L, Li A, Sun A, Liu R (2010) Preparative isolation of neomangiferin and mangiferin from Rhizoma anemarrhenae by high-speed countercurrent chromatography using ionic liquids as a two-phase solvent system modifier. J Sep Sci 33:31–36

    Article  CAS  PubMed  Google Scholar 

  94. Viswanadh EK, Rao BN, Rao BS (2010) Antigenotoxic effect of mangiferin and changes in antioxidant enzyme levels of Swiss albino mice treated with cadmium chloride. Hum Exp Toxicol 29:409–418

    Article  CAS  PubMed  Google Scholar 

  95. Kammalla AK, Ramasamy MK, Inampudi J, Dubey GP, Agrawal A, Kaliappan I (2015) Comparative pharmacokinetic study of mangiferin after oral administration of pure mangiferin and US patented polyherbal formulation to rats. AAPS PharmSciTech 16:250–258

    Article  CAS  PubMed  Google Scholar 

  96. Wang H, Ye G, Ma CH, Tang YH, Fan MS, Li ZX, Huang CG (2007) Identification and determination of four metabolites of mangiferin in rat urine. J Pharm Biomed Anal 45:793–798

    Article  CAS  PubMed  Google Scholar 

  97. Rashid K, Sinha K, Sil PC (2013) An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 62:584–600

    Article  CAS  PubMed  Google Scholar 

  98. Sinha K, Pal PB, Sil PC (2013) Mangiferin, a naturally occurring xanthone C-glycoside, ameliorates lead (Pb)-induced murine cardiac injury via mitochondria-dependent apoptotic pathways. Signpost Open Access J Org Biomol Chem 1:47–63

    Google Scholar 

  99. Faizi S, Zikr-Ur-Rehman S, Ali M, Naz A (2006) Temperature and solvent dependent NMR studies on mangiferin and complete NMR spectral assignments of its acyl and methyl derivatives. Magn Reson Chem 44:838–844

    Article  CAS  PubMed  Google Scholar 

  100. Barreto JC, Trevisan MT, Hull WE, Erben G, De Brito ES, Pfundstein B, Wurtele G, Spiegelhalder B, Owen RW (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J Agric Food Chem 56:5599–5610

    Article  CAS  PubMed  Google Scholar 

  101. Sekar M (2015) Molecules of interest-mangiferin-a review. Ann Res Rev Biol 5:307

    Article  Google Scholar 

  102. Danthu P, Lubrano C, Flavet L, Rahajanirina V, Behra O, Fromageot C, Rabevohitra R, Roger E (2010) Biological factors influencing production of xanthones in Aphloia theiformis. Chem Biodivers 7:140–150

    Article  CAS  PubMed  Google Scholar 

  103. Sethiya NK, Mishra S (2014) Investigation of mangiferin, as a promising natural polyphenol xanthone on multiple targets of Alzheimer’s disease. J Biol Act Prod Nat 4:111–119

    CAS  Google Scholar 

  104. Ahmad A, Padhye S, Sarkar FH (2012) Role of novel nutraceuticals garcinol, plumbagin and mangiferin in the prevention and therapy of human malignancies: mechanisms of anticancer activity. In: Nutraceuticals and cancer. Springer, Dordrecht

    Google Scholar 

  105. Joubert E, Otto F, Grüner S, Weinreich B (2003) Reversed-phase HPLC determination of mangiferin, isomangiferin and hesperidin in Cyclopia and the effect of harvesting date on the phenolic composition of C. genistoides. Eur Food Res Technol 216:270–273

    Article  CAS  Google Scholar 

  106. Morel I, Abalea V, Sergent O, Cillard P, Cillard J (1998) Involvement of phenoxyl radical intermediates in lipid antioxidant action of myricetin in iron-treated rat hepatocyte culture. Biochem Pharmacol 55:1399–1404

    Article  CAS  PubMed  Google Scholar 

  107. Sahu SC, Gray GC (1993) Interactions of flavonoids, trace metals, and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett 70:73–79

    Article  CAS  PubMed  Google Scholar 

  108. Chen W, Li Y, Li J, Han Q, Ye L, Li A (2011) Myricetin affords protection against peroxynitrite-mediated DNA damage and hydroxyl radical formation. Food Chem Toxicol 49:2439–2444

    Article  CAS  PubMed  Google Scholar 

  109. Henneberg R, Otuki MF, Furman AE, Hermann P, Do Nascimento AJ, Leonart MS (2013) Protective effect of flavonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea. Rev Bras Hematol Hemoter 35:52–55

    Article  PubMed  PubMed Central  Google Scholar 

  110. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841

    Article  CAS  PubMed  Google Scholar 

  111. Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients 8:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Xinhuai Z, Xin Z (2009) Comparisons of cytoprotective effects of three flavonoids against human hepatocytes oxidative injury induced by hydrogen peroxide or carbon tetrachloride in vitro. J Med Plant Res 3:776–784

    Google Scholar 

  113. Laughton MJ, Halliwell B, Evans PJ, Hoult JR (1989) Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 38:2859–2865

    Article  CAS  PubMed  Google Scholar 

  114. Pandey KB, Mishra N, Rizvi SI (2009) Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z Naturforsch C 64:626–630

    Article  CAS  PubMed  Google Scholar 

  115. Xie H-J, Mou W-S, Lin F-R, Xu J-H, Lei Q-F (2013) Radical scavenging activity of myricetin. Acta Phys -Chim Sin 29:1421–1432

    CAS  Google Scholar 

  116. Mira L, Fernandez MT, Santos M, Rocha R, Florencio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    Article  CAS  PubMed  Google Scholar 

  117. Justino GC, Vieira AJ (2010) Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution--a comparison and validation of semi-empirical methods. J Mol Model 16:863–876

    Article  CAS  PubMed  Google Scholar 

  118. Romanouskaya TV, Grinev VV (2009) Cytotoxic effect of flavonoids on leukemia cells and normal cells of human blood. Bull Exp Biol Med 148:57–59

    Article  CAS  PubMed  Google Scholar 

  119. Oyama Y, Fuchs PA, Katayama N, Noda K (1994) Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res 635:125–129

    Article  CAS  PubMed  Google Scholar 

  120. Lopez-Lazaro M, Willmore E, Austin CA (2010) The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res 696:41–47

    Article  CAS  PubMed  Google Scholar 

  121. Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R (1995) Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J Nat Prod 58:217–225

    Article  CAS  PubMed  Google Scholar 

  122. Kang NJ, Jung SK, Lee KW, Lee HJ (2011) Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci 1229:124–132

    Article  CAS  PubMed  Google Scholar 

  123. Kumamoto T, Fujii M, Hou DX (2009) Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett 275:17–26

    Article  CAS  PubMed  Google Scholar 

  124. Ichimatsu D, Nomura M, Nakamura S, Moritani S, Yokogawa K, Kobayashi S, Nishioka T, Miyamoto K (2007) Structure-activity relationship of flavonoids for inhibition of epidermal growth factor-induced transformation of JB6 Cl 41 cells. Mol Carcinog 46:436–445

    Article  CAS  PubMed  Google Scholar 

  125. Xu R, Zhang Y, Ye X, Xue S, Shi J, Pan J, Chen Q (2013) Inhibition effects and induction of apoptosis of flavonoids on the prostate cancer cell line PC-3 in vitro. Food Chem 138:48–53

    Article  CAS  PubMed  Google Scholar 

  126. Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64:599–606

    Article  CAS  PubMed  Google Scholar 

  127. Zhang ZT, Cao XB, Xiong N, Wang HC, Huang JS, Sun SG, Wang T (2010) Morin exerts neuroprotective actions in parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 31(8):900–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Benavente-Garcia O, Castillo J, Lorente J, Alcaraz M, Yanez I, Martinez C, Vicente V, Lozano J (2005) Antiproliferative activity of several phenolic compounds against melanoma cell lines: relationship between structure and activity. Agro Food Ind Hi Tech 16:30–34

    CAS  Google Scholar 

  129. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919

    Article  CAS  PubMed  Google Scholar 

  130. Labbe D, Provencal M, Lamy S, Boivin D, Gingras D, Beliveau R (2009) The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 139:646–652

    Article  CAS  PubMed  Google Scholar 

  131. Shih YW, Wu PF, Lee YC, Shi MD, Chiang TA (2009) Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: possible mediation by blocking the ERK signaling pathway. J Agric Food Chem 57:3490–3499

    Article  CAS  PubMed  Google Scholar 

  132. Kim ME, Ha TK, Yoon JH, Lee JS (2014) Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res 34:701–706

    CAS  PubMed  Google Scholar 

  133. Schutte ME, Van De Sandt JJ, Alink GM, Groten JP, Rietjens IM (2006) Myricetin stimulates the absorption of the pro-carcinogen PhIP. Cancer Lett 231:36–42

    Article  CAS  PubMed  Google Scholar 

  134. Borde P, Mohan M, Kasture S (2011) Effect of myricetin on deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Nat Prod Res 25:1549–1559

    Article  CAS  PubMed  Google Scholar 

  135. Godse S, Mohan M, Kasture V, Kasture S (2010) Effect of myricetin on blood pressure and metabolic alterations in fructose hypertensive rats. Pharm Biol 48:494–498

    Article  CAS  PubMed  Google Scholar 

  136. Kang BY, Kim SH, Cho D, Kim TS (2005) Inhibition of interleukin-12 production in mouse macrophages via decreased nuclear factor-kappaB DNA binding activity by myricetin, a naturally occurring flavonoid. Arch Pharm Res 28:274–279

    Article  CAS  PubMed  Google Scholar 

  137. Jimenez R, Andriambeloson E, Duarte J, Andriantsitohaina R, Jimenez J, Perez-Vizcaino F, Zarzuelo A, Tamargo J (1999) Involvement of thromboxane A2 in the endothelium-dependent contractions induced by myricetin in rat isolated aorta. Br J Pharmacol 127:1539–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cho YC, Yoon G, Lee KY, Choi HJ, Kang BY (2007) Inhibition of interleukin-2 production by myricetin in mouse EL-4 T cells. Arch Pharm Res 30:1075–1079

    Article  CAS  PubMed  Google Scholar 

  139. Ong KC, Khoo HE (1996) Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transport translocation. Biochem Pharmacol 51:423–429

    Article  CAS  PubMed  Google Scholar 

  140. Ong KC, Khoo HE (2000) Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci 67:1695–1705

    Article  CAS  PubMed  Google Scholar 

  141. Zelus C, Fox A, Calciano A, Faridian BS, Nogaj LA, Moffet DA (2012) Myricetin inhibits islet amyloid polypeptide (IAPP) aggregation and rescues living mammalian cells from IAPP toxicity. Open Biochem J 6:66–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tzeng TF, Liou SS, Liu IM (2011) Myricetin ameliorates defective post-receptor insulin signaling via beta-endorphin signaling in the skeletal muscles of fructose-fed rats. Evid Based Complement Alternat Med 2011:150752

    Article  PubMed  PubMed Central  Google Scholar 

  143. Liu IM, Tzeng TF, Liou SS, Lan TW (2007) Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus. Planta Med 73:1054–1060

    Article  CAS  PubMed  Google Scholar 

  144. Ozcan F, Ozmen A, Akkaya B, Aliciguzel Y, Aslan M (2012) Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin Exp Med 12:265–272

    Article  CAS  PubMed  Google Scholar 

  145. Gebhardt R (2003) Variable influence of kaempferol and myricetin on in vitro hepatocellular cholesterol biosynthesis. Planta Med 69:1071–1074

    Article  CAS  PubMed  Google Scholar 

  146. Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM (2012) Myricetin increases hepatic peroxisome proliferator-activated receptor alpha protein expression and decreases plasma lipids and adiposity in rats. Evid Based Complement Alternat Med 2012:787152

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, K., Chowdhury, S., Sil, P.C. (2018). Phytochemicals and Human Health. In: Rani, V., Yadav, U. (eds) Functional Food and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-1123-9_10

Download citation

Publish with us

Policies and ethics