Skip to main content

Whole-Genome Association Analysis of Treatment Response from Obsessive-Compulsive Disorder

  • Chapter
  • First Online:
Applied Computational Genomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 13))

Abstract

Up to 30% of individuals with obsessive-compulsive disorder (OCD) display an inadequate response to serotonin reuptake inhibitors (SRIs). Genetic predictors of OCD treatment response have not been efficiently examined using a genome-wide association study (GWAS). In order to identify genetic variations that could potentially influence SRI response, a GWAS with 804 OCD patients containing information on SRI response was conducted. SRI response was used based on self-reported data and characterized as “response” (N = 514) or “non-response” (N = 290). The more powerful quasi-likelihood score (MQLS) test was used to conduct a genome-wide association test correcting for relatedness. An adjusted logistic model was then used to examine the effect size of the variants in probands. The most significant SNP found was rs17162912 (P = 1.76 × 10−8), which is near the gene DISP1 on 1q41–q42, a microdeletion region that has been implicated in neurological development. Six other SNPs showed evidence of association (P < 10−5): rs9303380, rs12437601, rs16988159, rs7676822, rs1911877, and rs723815. Two of the SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, are located near the PCDH10 gene and had p-values of 2.86 × 10−6 and 8.41 × 10−6, respectively. The 35 other variations with a p-value <10−4 are involved with multiple genes expressed in the brain, including BRIN2B, PCDH10, and GPC6. The enrichment analysis suggested that there may be genes that play a role in the glutamatergic neurotransmission system (FDR = 0.0097) and the serotonergic system (FDR = 0.0213). The results of this study could provide new insights into genetic mechanisms underlying treatment response in OCD, but studies with larger sample sizes and more detailed information on drug dosage, as well as treatment duration, are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature. 2012;486(7403):410–4. [PubMed: 22722203].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso P, Gratacos M, Segalas C, Escaramis G, Real E, Bayes M, et al. Association between the NMDA glutamate receptor GRIN2B gene and obsessive-compulsive disorder. J Psychiatry Neurosci. 2012;37(4):273–81. [PubMed: 22433450].

    Article  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-IV). Washington, DC: Psychiatric Press; 1994.

    Google Scholar 

  • Arnold PD, Rosenberg DR, Mundo E, Tharmalingam S, Kennedy JL, Richter MA. Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study. Psychopharmacology. 2004;174(4):530–8. [PubMed: 15083261].

    Article  CAS  PubMed  Google Scholar 

  • Arnold PD, Macmaster FP, Hanna GL, Richter MA, Sicard T, Burroughs E, et al. Glutamate system genes associated with ventral prefrontal and thalamic volume in pediatric obsessive-compulsive disorder. Brain Imaging Behav. 2009;3(1):64–76. [PubMed: 21031159].

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandl EJ, Muller DJ, Richter MA. Pharmacogenetics of obsessive-compulsive disorders. Pharmacogenomics. 2012;13(1):71–81. [PubMed: 22176623].

    Article  CAS  PubMed  Google Scholar 

  • Brandl EJ, Tiwari AK, Zhou X, Deluce J, Kennedy JL, Muller DJ, et al. Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder. Pharmacogenomics J. 2014;14(2):176–81. [PubMed: 23545896].

    Article  CAS  PubMed  Google Scholar 

  • Chelala C, Khan A, Lemoine NR. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms. Bioinformatics. 2009;25(5):655–61. [PubMed: 19098027].

    Article  CAS  PubMed  Google Scholar 

  • Davis KL, Charney D, Coyle JT, Nemeroff C. Neuropsychopharmacology: the fifth generation of progress. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  • Di Bella D, Erzegovesi S, Cavallini MC, Bellodi L. Obsessive-Compulsive Disorder, 5-HTTLPR polymorphism and treatment response. Pharmacogenomics J. 2002;2(3):176–81. [PubMed: 12082589].

    Article  CAS  PubMed  Google Scholar 

  • Etheridge LA, Crawford TQ, Zhang S, Roelink H. Evidence for a role of vertebrate Disp1 in long-range Shh signaling. Development. 2010;137(1):133–40. [PubMed: 20023168].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson JM. SSRI antidepressant medications: Adverse effects and tolerability. Prim Care Companion J Clin Psychiatry. 2001;3(1):22–7. [PubMed: 15014625].

    Article  PubMed  PubMed Central  Google Scholar 

  • Hindorff LAMJ, Morales J, Junkins HA, Hall PN, Klemm AK, Manolio TA. A catalog of published genome-wide association studies. 2013. URL: www.genome.gov/gwastudies

  • Jun KR, Hur YJ, Lee JN, Kim HR, Shin JH, Oh SH, et al. Clinical characterization of DISP1 haploinsufficiency: a case report. Eur J Med Genet. 2013;56:309–13.

    Article  PubMed  Google Scholar 

  • Kim SY, Chung HS, Sun W, Kim H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience. 2007;147(4):996–1021. [PubMed: 17614211].

    Article  CAS  PubMed  Google Scholar 

  • Korf BR, Rehm HL. New approaches to molecular diagnosis. JAMA. 2013;309(14):1511–21. [PubMed: 23571590].

    Article  CAS  PubMed  Google Scholar 

  • Mattheisen M, Samuels JF, Wang Y, Greenberg BD, Fyer AJ, JT MC, et al. Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Mol Psychiatry. 2014;20:337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, et al. Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008;321(5886):218–23. [PubMed: 18621663].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9(2):85–96. [PubMed: 18209729].

    Article  CAS  PubMed  Google Scholar 

  • Nestadt G, Grados M, Samuels JF. Genetics of obsessive-compulsive disorder. Psychiatr Clin North Am. 2010;33(1):141–58. [PubMed: 20159344].

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336–7. [PubMed: 20634204].

    Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. [PubMed: 17701901].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Samuels JF, Wang Y, Zhu Y, Grados MA, Riddle MA, et al. Whole-genome association analysis of treatment response in obsessive-compulsive disorder. Mol Psychiatry Macmillan Publishers Limited. 2015;21:270. https://doi.org/10.1038/mp.2015.32.

    Article  CAS  Google Scholar 

  • Redies C, Hertel N, Hubner CA. Cadherins and neuropsychiatric disorders. Brain Res. 2012;1470:130–44. [PubMed: 22765916].

    Article  CAS  PubMed  Google Scholar 

  • Samuels JF, Riddle MA, Greenberg BD, Fyer AJ, McCracken JT, Rauch SL, et al. The OCD collaborative genetics study: methods and sample description. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(3):201–7. [PubMed: 16511842].

    Google Scholar 

  • Sangkuhl K, Klein TE, Altman RB. Selective serotonin reuptake inhibitors pathway. Pharmacogenet Genomics. 2009;19(11):907–9. [PubMed: 19741567].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shugart YY, Samuels J, Willour VL, Grados MA, Greenberg BD, Knowles JA, et al. Genomewide linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol Psychiatry. 2006;11(8):763–70. [PubMed: 16755275].

    Article  CAS  PubMed  Google Scholar 

  • Shugart YY, Wang Y, Samuels JF, Grados MA, Greenberg BD, Knowles JA, et al. A family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder in 378 families. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(6):886–92. [PubMed: 19152386].

    Article  CAS  PubMed  Google Scholar 

  • Stewart SEFJ, Moorjani J, Jenike E, Beattie K, Illmann C, Delorme R, Leboyer M, Sedovic M, Smoller J, Jenike M, Pauls D. Family-based association between obsessive compulsive disorder and glutamate receptor candidate genes. New York: World Congress of Psychiatric Genetics; 2007.

    Google Scholar 

  • Stewart SE, Yu D, Scharf JM, Neale BM, Fagerness JA, Mathews CA, et al. Genome-wide association study of obsessive-compulsive disorder. Mol Psychiatry. 2013;18(7):788–98. [PubMed: 22889921].

    Article  CAS  PubMed  Google Scholar 

  • Tansey KE, Guipponi M, Perroud N, Bondolfi G, Domenici E, Evans D, et al. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med. 2012;9(10):e1001326. [PubMed: 23091423].

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor S. Molecular genetics of obsessive-compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol Psychiatry. 2013;18(7):799–805. [PubMed: 22665263].

    Article  CAS  PubMed  Google Scholar 

  • Thornton T, McPeek MS. Case-control association testing with related individuals: a more powerful quasilikelihood score test. Am J Hum Genet. 2007;81(2):321–37. [PubMed: 17668381].

    Google Scholar 

  • Voyiaziakis E, Evgrafov O, Li D, Yoon HJ, Tabares P, Samuels J, et al. Association of SLC6A4 variants with obsessive-compulsive disorder in a large multicenter US family study. Mol Psychiatry. 2012;16(1):108–20. [PubMed: 19806148].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritter, M., Qin, H. (2018). Whole-Genome Association Analysis of Treatment Response from Obsessive-Compulsive Disorder. In: Yao, Y. (eds) Applied Computational Genomics. Translational Bioinformatics, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-1071-3_5

Download citation

Publish with us

Policies and ethics