Skip to main content

Discussion on Changes of Brachiopod Diversity and Morphologic Features and Their Implications for the Environmental and Biological Crisis of the Great Dying

  • Chapter
  • First Online:
Brachiopods around the Permian-Triassic Boundary of South China

Part of the book series: New Records of the Great Dying in South China ((NRGDSC))

  • 320 Accesses

Abstract

As concluded in Chap. 6, the decline of brachiopod diversity in deep-water facies took place earlier than in shallow-water facies during the Permian–Triassic transition. This phenomenon lets us recall the scenario that the upward migration of anoxic deep waters in a stratified ocean caused the radiolarian extinction in a Japanese pelagic environment (Isozaki 2009; Takahashi et al. 2013). Therefore, elsewhere we have proposed that the formation of a stratified ocean and, particularly, upward migration of the chemocline (or Oxygen Minimum Zone) in the stratified ocean was possibly responsible for this bathymetry-dependent differential temporal pattern of brachiopod disappearance across the PTB in South China (Fig. 8.1; He et al. 2015). Furthermore, the ocean stratification and upward migration of the chemocline was most likely linked to contemporaneous sustained volcanism. This was evidenced by the frequent occurrences of volcanic ash beds around the horizons where the diversity declined (Fig. 6.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanasjeva GA. 2008. Morphological study of the brachiopods of the Order Chonetida. Paleontological Journal, 42: 825–829.

    Article  Google Scholar 

  • Afanasjeva GA. 2009. Changes in the communities of Paleozoic brachiopods due to their development of their filtering system. Paleontological Journal, 43: 1378–1389.

    Article  Google Scholar 

  • Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ. 2011. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308: 1–11.

    Article  Google Scholar 

  • Algeo TJ, Henderson CM, Ellwood B, Rowe H, Elswick E, Bates S, Lyons T, Hower JC, Smith C, Maynard B, Hays LE, Summons R, Fulton J, Freeman KH. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin, 124: 1424–1448.

    Article  Google Scholar 

  • Algeo TJ, Henderson CM, Tong JN, Feng QL, Yin HF, Tyson RV. 2013. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes. Global Planetary Change, 105: 52–67.

    Article  Google Scholar 

  • Beauchamp B, Baud A. 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 37–63.

    Article  Google Scholar 

  • Bond DPG, Wignall PB. 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122: 1265–1279.

    Article  Google Scholar 

  • Chen J, Chen ZQ, Tong JN. 2011. Environmental determinants and ecologic selectivity of benthic faunas from nearshore to bathyal zones in the end-Permian mass extinction: Brachiopod evidence from South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 308: 84–97.

    Article  Google Scholar 

  • Chen ZQ, Kaiho K, George AD. 2005. Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 232–269.

    Article  Google Scholar 

  • Chen ZQ, Yang H, Luo M, Benton MJ, Kaiho K, Zhao LS, Huang YG, Zhang KX, Fang YH, Jiang HS, Qiu H, Li Y, Tu CY, Shi L, Zhang L, Feng XQ, Chen L. 2015. Complete biotic and sedimentary records of the Permian–Triassic transition from Meishan section, South China: Ecologically assessing mass extinction and its aftermath. Earth-Science Reviews, 149: 63–103.

    Google Scholar 

  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET. 2015. Ocean acidification and the Permo–Triassic mass extinction. Science, 348: 229–232.

    Article  Google Scholar 

  • Feng QL, Algeo TJ. 2014. Evolution of oceanic redox conditions during the Permo–Triassic: Evidence from radiolarian deepwater facies. Earth Science Reviews, 137: 34–51.

    Article  Google Scholar 

  • Feng QL, He WH, Gu SZ, Meng YY, Jin YX, Zhang F. 2007. Radiolarian evolution during the latest Permian in South China. Global and Planetary Change, 55: 177–192.

    Article  Google Scholar 

  • FĂĽrsich FT, Hurst JM. 1974. Environmental factors determining the distribution of brachiopods. Palaeontology, 17: 879–900.

    Google Scholar 

  • Georgiev SV, Horner TJ, Stein HJ, Hannah JL, Bingen B, Rehkämper M. 2015. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event. Earth and Planetary Science Letters, 410: 84–96.

    Article  Google Scholar 

  • Grant RE. 1968. Structural adaptation in two Permian brachiopod genera, Salt Range, West Pakistan. Journal of Paleontology, 42: 1–32.

    Google Scholar 

  • Grasby SE, Beauchamp B, Bond DPG, Wignall P, Talavera C, Galloway JM, Piepjohn K, Reinhardt L, Blomeier D. 2015. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geological Society of America Bulletin, 127: 1331–1347.

    Article  Google Scholar 

  • He WH, Twitchett RJ, Zhang Y, Shi GR, Feng QL, Yu JX, Wu SB, Peng XF. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology, 8: 391–402.

    Article  Google Scholar 

  • He WH, Shi GR, Zhang Y, Yang TL, Teng F, Wu SB. 2012. Systematics and palaeoecology of Changhsingian (Late Permian) Ambocoeliidae brachiopods from South China and implications for the end-Permian mass extinction. Alcheringa, 36: 515–530.

    Article  Google Scholar 

  • He WH, Shi GR, Zhang Y, Yang TL, Zhang KX, Wu SB, Niu ZJ, Zhang ZY. 2014. Changhsingian (latest Permian) deep-water brachiopod fauna from South China. Journal of Systematic Palaeontology, 12: 907–960.

    Article  Google Scholar 

  • He WH, Shi GR, Twitchett RJ, Zhang Y, Zhang KX, Song HJ, Yue ML, Wu SB, Wu HT, Yang TL, Xiao YF. 2015. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology, 13: 123–138.

    Article  Google Scholar 

  • He WH, Shi GR, Xiao YF, Zhang KX, Yang TL, Wu HT, Zhang Y, Chen B, Yue ML, Shen J, Wang YB, Yang H, Wu SB. 2017. Body-size changes of latest Permian brachiopods in varied palaeogeographic settings in South China and implications for controls on animal miniaturization in a highly stressed marine ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecolog, 486: 33–45.

    Article  Google Scholar 

  • Huang YG, Chen ZQ, Wignall PB, Zhao LS. 2017. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: Pyrite framboid evidence. Geological Society of America Bulletin, 129: 229–243.

    Article  Google Scholar 

  • Isozaki Y. 2009. Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: The G–LB and PTB events from a Panthalassan perspective. Journal of Asian Earth Sciences, 36: 459–480.

    Article  Google Scholar 

  • Isozaki Y, Shimizu N, Yao JX, Ji ZS, Matsuda T. 2007. End-Permian extinction and volcanism-induced environmental stress: The Permian–Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 252: 218–238.

    Article  Google Scholar 

  • Jensen MM, Petersen J, Dalsgaard T, Thamdrup B. 2009. Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Marine Chemistry, 113: 102–113.

    Article  Google Scholar 

  • Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH. 2000. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science, 289: 432–436.

    Article  Google Scholar 

  • Joachimski MM, Lai XL, Shen SZ, Jiang HS, Luo GM, Chen B, Chen J, Sun YD. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology, 40: 195–198.

    Article  Google Scholar 

  • Kearsey T, Twitchett RJ, Price GD, Grimes ST. 2009. Isotope excursions and palaeotemperature estimates from the Permian/Triassic Boundary in the Italian Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology, 279: 29–40.

    Article  Google Scholar 

  • Levin LA. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Annual Review of Oceanography and Marine Biology, 41: 1–45.

    Google Scholar 

  • Li GS, Wang YB, Shi GR, Liao W, Yu LX. 2016. Fluctuations of redox conditions across the Permian–Triassic boundary-new evidence from the GSSP section in Meishan of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 48–58.

    Article  Google Scholar 

  • Liao ZT. 1979. Brachiopod Assemblage Zone of Changhsing Stage and brachiopods from Permo–Triassic Boundary Beds in China. Acta Stratigraphica Sinica, 3: 200–208. [in Chinese].

    Google Scholar 

  • Luo GM, Algeo TJ, Huang JH, Zhou WF, Wang YB, Yang H, Richoz S, Xie SC. 2014. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 119–131.

    Article  Google Scholar 

  • Nabbefeld B, Grice K, Twitchett RJ, Summons RE, Hays L, Böttcher ME, Asif M. 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291: 84–96.

    Article  Google Scholar 

  • Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu MY, Wei JY. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 107: 8543–8548.

    Article  Google Scholar 

  • Pei Y, Chen ZQ, Fang YH, Kershaw S, Wu SQ, Luo M. 2017. Volcanism, redox conditions, and microbialite growth linked with the end-Permian mass extinction: Evidence from the Xiajiacao section (western Hubei Province), South China. Palaeogeography, Palaeoclimatology, Palaeoecology, online.

    Google Scholar 

  • Sano H, Wada T, Naraoka H. 2012. Late Permian to Early Triassic environmental changes in the Panthalassic Ocean: Record from the seamount-associated deep-marine siliceous rocks, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 363–364: 1–10.

    Article  Google Scholar 

  • Saunders A, Reichow M. 2009. The Siberian Traps and the End-Permian mass extinction: a critical review. Chinese Science Bulletin, 54: 20–37.

    Article  Google Scholar 

  • Shen J, Lei Y, Algeo TJ, Feng QL, Servais T, Yu JX, Zhou L. 2013. Volcanic effects on microplankton during the Permian–Triassic transition (Shangsi and Xinming, South China). Palaios, 28: 552–567.

    Article  Google Scholar 

  • Shen SZ, Cao CQ, Henderson CM, Wang XD, Shi GR, Wang Y, Wang W. 2006. End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld, 15: 3–30.

    Article  Google Scholar 

  • Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen YA, Wang XD, WangW, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG. 2011. Calibrating the End-Permian Mass Extinction. Science, 334: 1367–1372.

    Article  Google Scholar 

  • Shi GR, Zhang YC, Shen SZ, He WH. 2016. Nearshore–offshore–basin species diversity and body size variation patterns in Late Permian (Changhsingian) brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 96–107.

    Google Scholar 

  • Song HJ, Wignall PB, Tong JN, Yin HF. 2013. Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience, 6: 52–56.

    Article  Google Scholar 

  • Song HJ, Wignall PB, Chu DL, Tong JN, Sun YD, Song HY. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports. 4(4): 4132.

    Google Scholar 

  • Song HY, Tong JN, Tian L, Song HJ, Qiu HO, Zhu YY, Algeo TJ. 2014. Paleo-redox conditions across the Permian–Triassic boundary in shallow carbonate platform of the Nanpanjiang Basin, South China. Science China Earth Sciences, 57: 1030–1038.

    Article  Google Scholar 

  • Sun YD, Joachimski MM, Wignall PB, Yan CB, Chen YL, Jiang HS, Wang LN, Lai XL. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366–370.

    Article  Google Scholar 

  • Takahashi S, Yamakita S, Suzuki N, Kaiho K, Ehiro M. 2009. High organic carbon content and a decrease in radiolarians at the end of the Permian in a newly discovered continuous pelagic section: A coincidence? Palaeogeography, Palaeoclimatology, Palaeoecology, 271: 1–12.

    Article  Google Scholar 

  • Takahashi S, Kaiho K, Hori RS, Gorjan P, Watanabe T, Yamakita S, Aita Y, Takemura A, Sp€orli KB, Kakegawa T, Oba M. 2013. Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian–Triassic transition. Global and Planetary Change, 105: 68–78.

    Article  Google Scholar 

  • Tavakoli V, Naderi-Khujin M, Seyedmehdi Z. 2017. The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran. Geo-Marine Letters, 38: 179–192.

    Article  Google Scholar 

  • Thayer CW. 1986. Respiration and the function of brachiopod punctae. Lethaia, 19: 23–31.

    Article  Google Scholar 

  • Twitchett RJ. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252: 132–144.

    Article  Google Scholar 

  • Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian mass extinction event. Geology, 29: 351–354.

    Article  Google Scholar 

  • Wang Y, Shen SZ, Zhang YC, Wang XD, Wang W, Sadler PM, Erwin DH, Crowley JL, Henderson CM. 2014. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology, 41: 113–129.

    Article  Google Scholar 

  • Westbroek P, Yanagida J, Isa Y. 1980. Functional morphology of brachiopod and coral skeletal structures supporting ciliated epithelia. Paleobiology, 6: 313–330.

    Article  Google Scholar 

  • Williams A, Brunton CHC, Carlson SJ, Baker PG, Carter JL, Curry GB, Dagys AS, Gourvennec R, Hou HF, Jin YG, Johnson JG, Lee DE, MacKinnon DI, Racheboeuf PR, Smirnova TN, Sun DL. 2006. Rhynchonelliformea (part), p. 1689–1937. In: Williams A et al. (Eds), Treatise on Invertebrate Paleontology, Part H, Brachiopoda (revised) 5, Rhynchonelliformea (part). Geological Society of America and University of Kansas, Boulder and Lawrence.

    Google Scholar 

  • Wu SB, Wei M, Zhang KX. 1986. Facies changes and controlling factors of the Late Permian Changxing limestone in the Changxing area. Geological Review, 32: 419–425. [in Chinese with English abstract].

    Google Scholar 

  • Wu HT, He WH, Weldon EA. 2018. Prelude of benthic community collapse during the end-Permian mass extinction in siliciclastic offshore sub-basin: Brachiopod evidence from South China. Global and Planetary Change, 163: 158–170.

    Article  Google Scholar 

  • Xiang L, Schoepfer SD, Zhang H, Yuan DX, Cao CQ, Zheng QF, Henderson CM, Shen SZ. 2016. Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 59–71.

    Article  Google Scholar 

  • Yang JH, Cawood PA, Du YS, Huang H, Huang HM, Tao P. 2012. Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China. Sedimentary Geology, 261–262: 120–131.

    Article  Google Scholar 

  • Yang ZY, Wu SB, Yin HF, Xu GR, Zhang KX. 1991. Permo–Triassic Events of South China. Geological Publishing House, Beijing, 183 pp. [in Chinese with English abstract].

    Google Scholar 

  • Yin HF, Xie SC, Luo G, Algeo TJ, Zhang K. 2012. Two episodes of environmental change at the Permian–Triassic boundary of the GSSP section Meishan. Earth-Science Reviews, 115: 163–172.

    Article  Google Scholar 

  • Yin HF, Jiang HS, Xia WC, Feng QL, Zhang N, Shen J. 2014. The end-Permian regression in South China and its implication on mass extinction. Earth-Science Reviews, 137: 19–33.

    Article  Google Scholar 

  • Zhang KX, Tong JN, Yin HF, Wu SB. 1997. Sequence stratigraphy of the Permian–Triassic Boundary Section of Changxing, Zhejiang, southern China. Acta Geologica Sinica, 71: 90–103.

    Google Scholar 

  • Zhang L, Feng QL, He WH. 2017. Permian radiolarian biostratigraphy. In: Lucas SG, Shen SZ (eds), The Permian timescale, London: Geological Society. 450: 143–163.

    Google Scholar 

  • Zhang Y, Shi GR, Wu HT, Yang TL, He WH, Yuan AH, Lei Y. 2017. Community replacement, ecological shift and early warning signals prior to the end-Permian mass extinction: A case study from a nearshore clastic-shelf section in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 118–135.

    Article  Google Scholar 

  • Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B. 2001. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Marine Chemistry, 74: 29–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, WH., Shi, G.R., Bu, JJ. (2019). Discussion on Changes of Brachiopod Diversity and Morphologic Features and Their Implications for the Environmental and Biological Crisis of the Great Dying. In: He, WH., Shi, G., Zhang, KX., Yang, TL., Shen, SZ., Zhang, Y. (eds) Brachiopods around the Permian-Triassic Boundary of South China. New Records of the Great Dying in South China. Springer, Singapore. https://doi.org/10.1007/978-981-13-1041-6_8

Download citation

Publish with us

Policies and ethics