Skip to main content

Electroweak Baryogenesis

  • Chapter
  • First Online:
Book cover Electroweak Baryogenesis and Its Phenomenology

Part of the book series: Springer Theses ((Springer Theses))

  • 396 Accesses

Abstract

The Higgs boson would be the key particle to EWPT, so the establishment of the Higgs sector plays an essential role in EWBG. In fact, the discovery of the Higgs boson has narrowed down the possibilities of EWBG in various models. The high testability is one reason why EWBG is attractive. Given that the Large Hadron Collider (LHC) is running now, we expect that the LHC can examine more feasible parameter region. This chapter describes how electroweak baryogenesis satisfies the Sakharov criteria and creates the baryon asymmetry. Subsequently, a current status of the scenario is mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chiral fermions are defined as ψ L(x) = P L ψ(x) and ψ R(x) = P R ψ(x) with projection operators, P L = (1 − γ 5)∕2 and P R = (1 + γ 5)∕2.

  2. 2.

    π m implies the m-th homotopy group.

  3. 3.

    Because, π 3(U(1)) = 0.

  4. 4.

    In a precise sense, this is called a constrained instanton.

  5. 5.

    Here, we neglect a contribution from U(1)Y since the effect is a few %.

  6. 6.

    The Monte Carlo simulation is used in Ref. [23], and lattice simulations with hard-thermal loop are performed in Ref. [24].

  7. 7.

    For example, T N = 77.8 GeV and T C = 91.5 GeV in the scale-invariant two Higgs doublet model [14].

  8. 8.

    Here, although we simply consider only the sphaleron process, there are actually other processes involved in changing the number densities such as the Yukawa interaction. If such an interaction is in equilibrium, it works to decrease the produced left-handed particles.

  9. 9.

    For simplicity, only three left-handed quarks and left-handed lepton are described in Fig. 2.10, but the quarks and leptons over three generations are actually produced in the sphaleron process.

  10. 10.

    Perturbative calculation shows smaller value of \(m_h\lesssim 42\) GeV for the first-order phase transition [1].

  11. 11.

    To be exact, this is because the size of the CP violation in the SM depends on the structure of the Cabibbo-Kobayashi-Maskawa matrix.

  12. 12.

    In principle, smaller value of λ is also able to cause larger v CT C. However, it would be less possibility that the coupling λ is deviated from the SM value unless some peculiar parameters are chosen.

  13. 13.

    It is also proposed that new fermion which strongly couples to the Higgs can strengthen the first-order phase transition [46], where O(1) Yukawa coupling is needed.

  14. 14.

    It turned out that the scale is somewhat low Λ ∼ 800 GeV.

References

  1. A. Riotto, [hep-ph/9807454]

    Google Scholar 

  2. G. ’t Hooft, Phys. Rev. D 14, 3432 (1976) [Phys. Rev. D 18, 2199 (1978)]

    Article  ADS  Google Scholar 

  3. F.R. Klinkhamer, N.S. Manton, Phys. Rev. D 30, 2212 (1984)

    Article  ADS  Google Scholar 

  4. C.S. Lim, Violation of CP Symmetry (in Japanese) published by Saiensu-sha Co., Ltd. Publishers

    Google Scholar 

  5. N.H. Christ, Phys. Rev. D 21, 1591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Ambjorn, J. Greensite, C. Peterson, Nucl. Phys. B 221, 381 (1983)

    Article  ADS  Google Scholar 

  7. F.R. Klinkhamer, C. Rupp, J. Math. Phys. 44, 3619 (2003) [hep-th/0304167]

    Article  ADS  MathSciNet  Google Scholar 

  8. Based on K. Funakubo’s lecture slides held in the intensive course at Nagoya University on 20–21 June 2013

    Google Scholar 

  9. N.S. Manton, Phys. Rev. D 28, 2019 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Funakubo, A. Kakuto, S. Tao, F. Toyoda, Prog. Theor. Phys. 114, 1069 (2006) [hep-ph/0506156]

    Google Scholar 

  11. K. Funakubo, K. Fuyuto, E. Senaha, [arXiv:1612.05431 [hep-ph]]

    Google Scholar 

  12. K. Funakubo, E. Senaha, Phys. Rev. D 79, 115024 (2009) [arXiv:0905.2022 [hep-ph]]

    Google Scholar 

  13. K. Fuyuto, E. Senaha, Phys. Rev. D 90(1), 015015 (2014) [arXiv:1406.0433 [hep-ph]]

    Google Scholar 

  14. K. Fuyuto, E. Senaha, Phys. Lett. B 747, 152 (2015)

    Article  ADS  Google Scholar 

  15. V.A. Rubakov, M.E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996) [Phys. Usp. 39, 461 (1996)] [hep-ph/9603208]

    Article  Google Scholar 

  16. A. Ringwald, Nucl. Phys. B 330, 1 (1990)

    Article  ADS  Google Scholar 

  17. O. Espinosa, Nucl. Phys. B 343, 310 (1990)

    Article  ADS  Google Scholar 

  18. D.T. Son, V.A. Rubakov, Nucl. Phys. B 422, 195 (1994) [hep-ph/9310240]

    Google Scholar 

  19. S.H.H. Tye, S.S.C. Wong, Phys. Rev. D 92(4), 045005 (2015) [arXiv:1505.03690 [hep-th]]

    Google Scholar 

  20. K. Funakubo, S.Otsuki, K. Takenaga, F. Toyoda, Prog. Theor. Phys. 87, 663 (1992)

    Article  ADS  Google Scholar 

  21. K. Funakubo, S. Otsuki, K. Takenaga, F. Toyoda, Prog. Theor. Phys. 89, 881 (1993) [hep-ph/9211212]

    Article  ADS  Google Scholar 

  22. P.B. Arnold, L.D. McLerran, Phys. Rev. D 36, 581 (1987)

    Article  ADS  Google Scholar 

  23. J. Ambjorn, T. Askgaard, H. Porter, M.E.Shaposhnikov, Nucl. Phys. B 353, 346 (1991)

    Article  ADS  Google Scholar 

  24. G.D. Moore, K. Rummukainen, Phys. Rev. D 61, 105008 (2000) [hep-ph/9906259]

    Google Scholar 

  25. K. Funakubo, Prog. Theor. Phys. 96, 475 (1996) [hep-ph/9608358]

    Google Scholar 

  26. N. Turok, Phys. Rev. Lett. 68, 1803 (1992)

    Article  ADS  Google Scholar 

  27. B.H. Liu, L.D. McLerran, N. Turok, Phys. Rev. D 46, 2668 (1992)

    Article  ADS  Google Scholar 

  28. L. Carson, X. Li, L.D. McLerran, R.T. Wang, Phys. Rev. D 42, 2127 (1990)

    Article  ADS  Google Scholar 

  29. G.D. Moore, Phys. Rev. D 59, 014503 (1999) [hep-ph/9805264]

    Google Scholar 

  30. S.R. Coleman, E.J. Weinberg, Phys. Rev. D 7, 1888 (1973)

    Article  ADS  Google Scholar 

  31. R.Jackiw, Phys. Rev. D 9, 1686 (1974)

    Article  ADS  Google Scholar 

  32. L. Dolan, R. Jackiw, Phys. Rev. D 9, 3320 (1974)

    Article  ADS  Google Scholar 

  33. M.E. Carrington, J.I. Kapusta, Phys. Rev. D 47, 5304 (1993)

    Article  ADS  Google Scholar 

  34. A.D. Linde, Nucl. Phys. B 216, 421 (1983); Erratum: [Nucl. Phys. B 223, 544 (1983)]

    Article  ADS  Google Scholar 

  35. G. Aad et al., [ATLAS Collaboration], Phys. Lett. B 716, 1 (2013) [arXiv:1207.7214 [hep-ex]]

    Google Scholar 

  36. S. Chatrchyan et al., [CMS Collaboration], Phys. Lett. B 716, 30 (2012) [arXiv:1207.7235 [hep-ex]]

    Google Scholar 

  37. K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Phys. Rev. Lett. 77, 2887 (1996) [hep-ph/9605288]

    Article  ADS  Google Scholar 

  38. K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, M.E. Shaposhnikov, Nucl. Phys. B 532, 283 (1998) [hep-lat/9805013]

    Google Scholar 

  39. F. Csikor, Z. Fodor, J. Heitger, Phys. Rev. Lett. 82, 21 (1999) [hep-ph/9809291]

    Article  ADS  Google Scholar 

  40. Y. Aoki, F. Csikor, Z. Fodor, A. Ukawa, Phys. Rev. D 60, 013001 (1999) [hep-lat/9901021]

    Google Scholar 

  41. M. Laine, K. Rummukainen, Nucl. Phys. Proc. Suppl. 73, 180 (1999) [hep-lat/9809045]

    Google Scholar 

  42. M.B. Gavela, P. Hernandez, J. Orloff, O. Pene, Mod. Phys. Lett. A 9, 795 (1994) [hep-ph/9312215]

    Article  ADS  Google Scholar 

  43. M.B. Gavela, P. Hernandez, J. Orloff, O. Pene, C. Quimbay, Nucl. Phys. B 430, 382 (1994) [hep-ph/9406289]

    Google Scholar 

  44. P. Huet, E. Sather, Phys. Rev. D 51, 379 (1995) [hep-ph/9404302]

    Article  ADS  Google Scholar 

  45. T. Konstandin, T. Prokopec, M.G. Schmidt, Nucl. Phys. B 679, 246 (2004) [hep-ph/0309291]

    Google Scholar 

  46. M. Carena, A. Megevand, M. Quiros, C.E.M. Wagner, Nucl. Phys. B 716, 319 (2005) [hep-ph/0410352]

    Google Scholar 

  47. A. Brignole, J.R. Espinosa, M. Quiros, F. Zwirner, Phys. Lett. B 324, 181 (1994) [hep-ph/9312296]

    Google Scholar 

  48. J.R. Espinosa, M. Quiros, F. Zwirner, Phys. Lett. B 307 (1993) 106 [hep-ph/9303317]

    Google Scholar 

  49. M. Carena, M. Quiros, C.E.M. Wagner, Phys. Lett. B 380, 81 (1996) [hep-ph/9603420]

    Google Scholar 

  50. D. Delepine, J.M. Gerard, R. Gonzalez Felipe, J. Weyers, Phys. Lett. B 386, 183 (1996) [hep-ph/9604440]

    Google Scholar 

  51. J.M. Cline, K. Kainulainen, Nucl. Phys. B 482, 73 (1996) [hep-ph/9605235]

    Google Scholar 

  52. M. Laine, K. Rummukainen, Nucl. Phys. B 535, 423 (1998) [hep-lat/9804019]

    Google Scholar 

  53. T. Cohen, D.E. Morrissey, A. Pierce, Phys. Rev. D 86, 013009 (2012) [arXiv:1203.2924 [hep-ph]]

    Google Scholar 

  54. M. Carena, G. Nardini, M. Quiros, C.E.M. Wagner, JHEP 1302, 001 (2013) [arXiv:1207.6330 [hep-ph]]

    Google Scholar 

  55. M. Carena, G. Nardini, M. Quiros, C.E.M. Wagner, Nucl. Phys. B 812, 243 (2009) [arXiv:0809.3760 [hep-ph]]

    Google Scholar 

  56. K. Funakubo, A. Kakuto, K. Takenaga, Prog. Theor. Phys. 91, 341 (1994) [hep-ph/9310267]

    Article  ADS  Google Scholar 

  57. A.T. Davies, C.D. froggatt, G. Jenkins, R.G. Moorhouse, Phys. Lett. B 336, 464 (1994)

    Google Scholar 

  58. J.M. Cline, P.A. Lemieux, Phys. Rev. D 55, 3873 (1997) [hep-ph/9609240]

    Article  ADS  Google Scholar 

  59. S. Kanemura, Y. Okada, E. Senaha, Phys. Lett. B 606, 361 (2005)

    Article  ADS  Google Scholar 

  60. L. Fromme, S.J. Huber, M. Seniuch, JHEP 0611, 038 (2006) [hep-ph/0605242]

    Google Scholar 

  61. G.C. Dorsch, S.J. Huber, J.M. No, JHEP 1310, 029 (2013) [arXiv:1305.6610 [hep-ph]]

    Google Scholar 

  62. C.W. Chiang, K. Fuyuto, E. Senaha, Phys. Lett. B 762, 315 (2016) [arXiv:1607.07316 [hep-ph]]

    Google Scholar 

  63. G.C. Dorsch, S.J. Huber, K. Mimasu, J.M. No, [arXiv:1705.09186 [hep-ph]]

    Google Scholar 

  64. J.R. Espinosa, M. Quiros, Phys. Lett. B 305, 98 (1993) [hep-ph/9301285]

    Google Scholar 

  65. J. Choi, R.R. Volkas, Phys. Lett. B 317, 385 (1993)

    Article  ADS  Google Scholar 

  66. K.E.C. Benson, Phys. Rev. D 48, 2456 (1993)

    Article  ADS  Google Scholar 

  67. G.C. Branco, D. Delepine, D. Emmanuel-Costa, F.R. Gonzalez, Phys. Lett. B 442, 229 (1998) [hep-ph/9805302]

    Google Scholar 

  68. S.W. Ham, Y.S. Jeong, S.K. Oh, J. Phys. G 31(8), 857 (2005) [hep-ph/0411352]

    Google Scholar 

  69. A. Ahriche, Phys. Rev. D 75, 083522 (2007) [hep-ph/0701192]

    Google Scholar 

  70. J.R. Espinosa, M. Quiros, Phys. Rev. D 76, 076004 (2007) [hep-ph/0701145]

    Google Scholar 

  71. A. Noble, M. Perelstein, Phys. Rev. D 78, 063518 (2008) [arXiv:0711.3018 [hep-ph]]

    Google Scholar 

  72. J.R. Espinosa, T. Konstandin, J.M. No, M. Quiros, Phys. Rev. D 78, 123528 (2008) [arXiv:0809.3215 [hep-ph]]

    Google Scholar 

  73. S. Das, P.J. Fox, A. Kumar, N. Weiner, JHEP 1011, 108 (2010)

    Article  ADS  Google Scholar 

  74. A. Ashoorioon, T. Konstandin, JHEP 0907, 086 (2009) [arXiv:0904.0353 [hep-ph]]

    Google Scholar 

  75. D.J.H. Chung, A.J. Long, Phys. Rev. D 84, 103513 (2011)

    Article  ADS  Google Scholar 

  76. J.R. Espinosa, T. Konstandin, F. Riva, Nucl. Phys. B 854, 592 (2012) [arXiv:1107.5441 [hep-ph]]

    Google Scholar 

  77. V. Barger, D.J.H. Chung, A.J. Long, L.T. Wang, Phys. Lett. B 710, 1 (2012) [arXiv:1112.5460 [hep-ph]]

    Google Scholar 

  78. P.H. Damgaard, D. O’Connell, T.C. Petersen, A. Tranberg, Phys. Rev. Lett. 111(22), 221804 (2013)

    Article  ADS  Google Scholar 

  79. S. Profumo, M.J. Ramsey-Musolf, G. Shaughnessy, JHEP 0708, 010 (2007)

    Article  ADS  Google Scholar 

  80. S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwrightm, P. Winslow, Phys. Rev. D 91(3), 035018 (2015)

    Article  ADS  Google Scholar 

  81. J.M. Cline, K. Kainulainen, JCAP 1301, 012 (2013)

    Article  ADS  Google Scholar 

  82. C.Y. Chen, J. Kozaczuk, I.M. Lewis, [arXiv:1704.05844 [hep-ph]]

    Google Scholar 

  83. D.J.H. Chung, A.J. Long, L.T. Wang, Phys. Rev. D 87(2), 023509 (2013) [arXiv:1209.1819 [hep-ph]]

    Google Scholar 

  84. C. Grojean, G. Servant, J.D. Wells, Phys. Rev. D 71, 036001 (2005) [hep-ph/0407019]

    Google Scholar 

  85. B. Grinstein, M. Trott, Phys. Rev. D 78, 075022 (2008) [arXiv:0806.1971 [hep-ph]]

    Google Scholar 

  86. C. Delaunay, C. Grojean, J.D. Wells, JHEP 0804, 029 (2008) [arXiv:0711.2511 [hep-ph]]

    Google Scholar 

  87. H.H. Patel, M.J. Ramsey-Musolf, Phys. Rev. D 88, 035013 (2013) [arXiv:1212.5652 [hep-ph]]

    Google Scholar 

  88. N. Blinov, J. Kozaczuk, D.E. Morrissey, C. Tamarit, Phys. Rev. D 92(3), 035012 (2015) [arXiv:1504.05195 [hep-ph]]

    Google Scholar 

  89. S. Inoue, G. Ovanesyan, M.J. Ramsey-Musolf, Phys. Rev. D 93, 015013 (2016) [arXiv:1508.05404 [hep-ph]]

    Google Scholar 

  90. D. Curtin, P. Jaiswal, P. Meade, JHEP 1208, 005 (2012)

    Article  ADS  Google Scholar 

  91. A. Katz, M. Perelstein, JHEP 1407, 108 (2014) [arXiv:1401.1827 [hep-ph]]

    Google Scholar 

  92. A. Katz, M. Perelstein, M.J. Ramsey-Musolf, P. Winslow, Phys. Rev. D 92(9), 095019 (2015) [arXiv:1509.02934 [hep-ph]]

    Google Scholar 

  93. K. Krizka, A. Kumar, D.E. Morrissey, Phys. Rev. D 87(9), 095016 (2013)

    Article  ADS  Google Scholar 

  94. K. Cheung, T.J. Hou, J.S. Lee, E. Senaha, Phys. Lett. B 710, 188 (2012) [arXiv:1201.3781 [hep-ph]]

    Google Scholar 

  95. J. Kozaczuk, S. Profumo, C.L. Wainwright, Phys. Rev. D 87(7), 075011 (2013) [arXiv:1302.4781 [hep-ph]]

    Google Scholar 

  96. S. Tulin, P. Winslow, Phys. Rev. D 84, 034013 (2011) [arXiv:1105.2848 [hep-ph]]

    Google Scholar 

  97. T. Liu, M.J. Ramsey-Musolf, J. Shu, Phys. Rev. Lett. 108, 221301 (2012) [arXiv:1109.4145 [hep-ph]]

    Google Scholar 

  98. J. Shu, Y. Zhang, Phys. Rev. Lett. 111(9), 091801 (2013) [arXiv:1304.0773 [hep-ph]]

    Google Scholar 

  99. H.K. Guo, Y.Y. Li, T. Liu, M. Ramsey-Musolf, J. Shu, Phys. Rev. D 96(11), 115034 (2017) [arXiv:1609.09849 [hep-ph]]

    Google Scholar 

  100. K. Fuyuto, W.S. Hou, E. Senaha, Phys. Lett. B 776, 402 (2018) [arXiv:1705.05034 [hep-ph]]

    Google Scholar 

  101. G. Aad et al., [ATLAS Collaboration], JHEP 1512, 061 (2015) [arXiv:1509.06047 [hep-ex]]

    Google Scholar 

  102. V. Khachatryan et al., [CMS Collaboration], JHEP 1702, 079 (2017) [arXiv:1610.04857 [hep-ex]]

    Google Scholar 

  103. ATLAS Collaboration, ATL-PHYS-PUB-2013-012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuyuto, K. (2018). Electroweak Baryogenesis. In: Electroweak Baryogenesis and Its Phenomenology. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1008-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1008-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1007-2

  • Online ISBN: 978-981-13-1008-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics