Skip to main content

3D Bioprinting of Adipose-Derived Stem Cells for Organ Manufacturing

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Organ manufacturing is an attractive high-tech research field which can solve the serious donor shortage problems for allograft organ transplantation, high throughput drug screening, and energy metabolism model establishment. How to integrate heterogeneous cell types along with other biomaterials to form bioartificial organs is one of the kernel issues for organ manufacturing. At present, three-dimensional (3D) bioprinting of adipose-derives stem cell (ADSC) containing hydrogels has shown the most bright futures with respect to overcoming all the difficult problems encountered by tissue engineers over the last several decades. In this chapter, we briefly introduce the 3D ADSC bioprinting technologies for organ manufacturing, especially for the branched vascular network construction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang X, Yan Y, Lin F, Xiong Z, Wu R, Zhang R, Lu Q (2005) Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver. J Biomater Sci Polym Ed 16:1063–1080

    Article  CAS  Google Scholar 

  2. Wang X, Yan Y, Zhang R (2007) Rapid prototyping as tool for manufacturing bioartificial livers. Trends Biotechnol 25:505–513

    Article  CAS  Google Scholar 

  3. Wang X, Yan Y, Zhang R (2016) Recent trends and challenges in complex organ manufacturing. Tissue Eng Part B 16:189–197

    Article  Google Scholar 

  4. Wang X (2012) Intelligent freeform manufacturing of complex organs. Artif Org 36:951–961

    Article  Google Scholar 

  5. Wang X, Huang Y, Liu CA (2015) Combined rotational mold for manufacturing a functional liver system. J Bioact Compat Polym 39:436–451

    Article  Google Scholar 

  6. Lei M, Wang X (2016) Biodegradable polymers and stem cells for bioprinting. Molecules 21:539

    Article  Google Scholar 

  7. Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J, Liu F, Lin F, Wu R, Zhang R, Lu Q (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90

    Article  CAS  Google Scholar 

  8. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26:5864–5871

    Article  CAS  Google Scholar 

  9. Xu W, Wang X, Yan Y, Zheng W, Xiong Z, Lin F, Wu R, Zhang R (2007) Rapid prototyping three-dimensional cell/gelatin/fibrinogen constructs for medical regeneration. J Bioact Compat Polym 22:363–377

    Article  CAS  Google Scholar 

  10. Zhang T, Yan Y, Wang X, Xiong Z, Lin F, Wu R, Zhang R (2007) Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury. J Bioact Compat Polym 22:19–29

    Article  Google Scholar 

  11. Wang X, Ao Q, Tian X, Fan J, Wei Y, Tong H, Hou W, Bai S (2017) Gelatin-based hydrogels for organ 3D bioprinting. Polymers 9:401. https://doi.org/10.3390/polym9090401

    Article  CAS  Google Scholar 

  12. Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S (2016) 3D bioprinting technologies for hard tissue and organ engineering. Materials 9:802. https://doi.org/10.3390/ma9100802

    Article  CAS  PubMed Central  Google Scholar 

  13. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  14. Moniaux N, Faivre JA (2011) Reengineered liver for transplantation. J Hepatol 54:386–387

    Article  Google Scholar 

  15. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    Article  CAS  Google Scholar 

  16. Xu Y, Li D, Wang X (2015) Current trends and challenges for producing artificial hearts. In: Wang XH (ed) Organ manufacturing. Nova Science Publishers Inc, New York, pp 101–125

    Google Scholar 

  17. Zhou X, Wang X (2015) Artificial kidney manufacturing. In: Wang X (ed) Organ manufacturing. Nova Science Publishers Inc, New York, pp 227–244

    Google Scholar 

  18. Xu Y, Li D, Wang X (2015) The construction of vascularized pancreas based on 3D printing techniques. In: Wang X (ed) Organ manufacturing. Nova Science Publishers Inc, New York, pp 245–268

    Google Scholar 

  19. Wang X, Wang J (2015) Vascularization and adipogenesis of a spindle hierarchical adipose-derived stem cell/collagen/alginate-PLGA construct for breast manufacturing. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 4:1–8

    Google Scholar 

  20. Wang X (2015) Editorial: drug delivery design for regenerative medicine. Curr Pharm Des 21(12):1503–1505

    Article  CAS  Google Scholar 

  21. Libiao Liu WX (2015) Creation of a vascular system for complex organ manufacturing. Int J Bioprinting 1:77–86

    Google Scholar 

  22. Zhao X, Du S, Chai L, Zhou X, Liu L, Xu Y, Wang J, Zhang W, Liu C-H, Wang X (2015) Anti-cancer drug screening based on an adipose-derived stem cell/hepatocye 3D printing technique. J Stem Cell Res Ther 5:273. https://doi.org/10.4172/2157-7633.1000273

    Article  CAS  Google Scholar 

  23. Chua CK, Yeong WY (2015) Bioprinting: principles and Applications. World Scientific Publishing Co., Singapore, p 296. isbn:9789814612104

    Google Scholar 

  24. Hendriks J, Willem Visser C, Henke S, Leijten J, Saris DB, Sun C, Lohse D, Karperien M (2015) Optimizing cell viability in droplet-based cell deposition. Sci Rep 11:11304

    Article  Google Scholar 

  25. Cui X, Dean D, Ruggeri ZM, Boland T (2010) Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng 106:963–969

    Article  CAS  Google Scholar 

  26. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22:673–685

    Article  CAS  Google Scholar 

  27. Irvine SA, Venkatraman SS (2016) Bioprinting and differentiation of stem cells. Molecules 21:E1188

    Article  Google Scholar 

  28. Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21:E685

    Article  Google Scholar 

  29. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  Google Scholar 

  30. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) Bioprinting: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  CAS  Google Scholar 

  31. Jia W, Gungor-Ozkerim PS, Zhang YS, K Y, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  Google Scholar 

  32. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203

    Article  CAS  Google Scholar 

  33. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Article  CAS  Google Scholar 

  34. Gruene M, Pflaum M, Hess C, Diamantouros S, Schlie S, Deiwick A, Koch L, Wilhelmi M, Jockenhoevel S, Haverich A, Chichkov B (2011) Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 17:973–982

    Article  Google Scholar 

  35. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S, Chabassier P, Fricain JC, Amédée J (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500

    Article  CAS  Google Scholar 

  36. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    Article  CAS  Google Scholar 

  37. Liu L, Wang X (2015) Hared tissue and organ manufacturing. In: Wang X (ed) Organ manufacturing. Nova Science Publishers Inc, New York, pp 301–333

    Google Scholar 

  38. Kim JD, Choi JS, Kim BS et al (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51:2147–2154

    Article  CAS  Google Scholar 

  39. Loo Y, Hauser CA (2015) Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed Mater 11:014103

    Article  Google Scholar 

  40. Matias JM, Bartolo PJ, Pontes AV (2009) Modeling and simulation of photofabrication processes using unsaturated polyester resins. J Appl Polym Sci 114:3673–3685

    Article  CAS  Google Scholar 

  41. Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioative poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34:1429–1441

    Article  Google Scholar 

  42. Ng WL, Yeong WY, Naing MW (2017) Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials 10:190

    Article  Google Scholar 

  43. Kouhi E, Masood S, Morsi Y (2008) Design and fabrication of reconstructive mandibular models using fused deposition modeling. Assem Autom 28:246–254

    Article  Google Scholar 

  44. Ricci JL, Clark EA, Murriky A, Smay JE (2012) Three-dimensional printing of bone repair and replacement materials: impact on craniofacial surgery. J Craniofac Surg 23:304–308

    Article  Google Scholar 

  45. Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3:1007–1018

    Article  CAS  Google Scholar 

  46. Wang X. (2014) 3D printing of tissue/organ analogues for regenerative medicine, In: Handbook of intelligent Scaffolds for regenerative medicine, G Khang ed, the 2nd, Singapore Pan Stanford Publishing pp.557–570

    Google Scholar 

  47. Chi W-J, Chang Y-K, Hong S-K (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 94:917–930

    Article  CAS  Google Scholar 

  48. Zhang L-M, Wu C-X, Huang J-Y, Peng X-H, Chen P, Tang S-Q (2012) Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydr Polym 88:1445–1452

    Article  CAS  Google Scholar 

  49. Xu Y, Wang X (2015) Application of 3D biomimetic models for drug delivery and regenerative medicine. Curr Pharm Des 21:1618–1626

    Article  CAS  Google Scholar 

  50. Liu L, Zhou X, Xu Y, Zhang W, Liu C-H, Wang X (2015) Controlled release of growth factors for regenerative medicine. Curr Pharm Des 21:1627–1632

    Article  CAS  Google Scholar 

  51. Wang J, Wang X (2014) Development of a combined 3D printer and its application in complex organ construction. M. Eng. thesis, Tsinghua University, Beijing, China

    Google Scholar 

  52. Ma X, Qu X, Zhu W et al (2016) Deterministically patterned biomimetic human iPSC derived hepatic model via rapid 3D bioprinting. PNAS 113:2206–2211

    Article  CAS  Google Scholar 

  53. Tricomi BJ, Dias AD, Corr DT (2016) Stem cell bioprinting for applications in regenerative medicine. Ann N Y Acad Sci 1383:115–124

    Article  Google Scholar 

  54. Koch L, Kuhn S, Sorg H et al (2010) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 16:847–854

    Article  CAS  Google Scholar 

  55. Gu Q, Tomaskovic-Crook E, Lozano R et al (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5:1429–1438

    Article  CAS  Google Scholar 

  56. Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57

    Article  CAS  Google Scholar 

  57. Lee W, Pinckney J, Lee V et al (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 20:798–803

    Article  Google Scholar 

  58. Gaebel R, Ma N, Liu J et al (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230

    Article  CAS  Google Scholar 

  59. Skardal A, Mack D, Kapetanovic E et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802

    Article  CAS  Google Scholar 

  60. Shi Y, Inoue H, Wu JC, Yamanaka S (2016) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130

    Article  Google Scholar 

  61. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26:127

    Article  CAS  Google Scholar 

  62. Jung JP, Bhuiyan DB, Ogle BM (2016) Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater Res 20:27

    Article  Google Scholar 

  63. Bauwens CL, Peerani R, Niebruegge S et al (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310

    Article  Google Scholar 

  64. Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31:10–19

    Article  CAS  Google Scholar 

  65. Hsieh FY, Hsu SH (2015) 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis 11:153–158

    Article  Google Scholar 

  66. Choi YY, Chung BG, Lee DH, Khademhosseini A, Kim JH, Lee SH (2010) Controlled-size embryoid body formation in concave microwell arrays. Biomaterials 31:4296–4303

    Article  CAS  Google Scholar 

  67. Lin X, Shi Y, Cao Y, Liu W (2016) Recent progress in stem cell differentiation directed by material and mechanical cues. Biomed Mater 11:014109

    Article  Google Scholar 

  68. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS 92:9363–9367

    Article  CAS  Google Scholar 

  69. Yao R, Zhang R, Yan Y, Wang X (2009) In vitro angiogenesis of 3D tissue engineered adipose tissue. J Bioact Compat Polym 24:5–24

    Article  CAS  Google Scholar 

  70. Yao R, Zhang R, Wang X (2009) Design and evaluation of a cell microencapsulating device for cell assembly technology. J Bioact Compat Polym 24:48–62

    Article  Google Scholar 

  71. Xu M, Yan Y, Liu H, Yao Y, Wang X (2009) Control adipose-derived stromal cells differentiation into adipose and endothelial cells in a 3-D structure established by cell-assembly technique. J Bioact Compat Polym 24:31–47

    Article  Google Scholar 

  72. Xu M, Wang X, Yan Y, Yao R, Ge Y (2010) A cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 31:3868–3877

    Article  CAS  Google Scholar 

  73. Williams SK, Touroo JS, Church KH, Hoying JB (2013) Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. Biores Open Access 2:448–454

    Article  CAS  Google Scholar 

  74. Ahn SH, Lee HJ, Lee JS, Yoon H, Chun W, Kim GH (2015) A novel cell-printing method and its application to hepatogenic differentiation of human adipose stem cell-embedded mesh structures. Sci Rep 5:13427

    Article  CAS  Google Scholar 

  75. Patrick CW Jr (2000) Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin Sur Oncol 19:302–311

    Article  Google Scholar 

  76. Wang X, Tuomi J, Mäkitie AA, Poloheimo K-S, Partanen J, Yliperttula M (2013) The integrations of biomaterials and rapid prototyping techniques for intelligent manufacturing of complex organs. In: Lazinica R (ed) Advances in biomaterials science and applications in biomedicine. In Tech, Rijeka, pp 437–463

    Google Scholar 

  77. Xu Y, Wang X (2015) Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel. Bioeng Biotech 112:1683–1695

    Article  CAS  Google Scholar 

  78. Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  Google Scholar 

  79. Nickels L (2012) World's first patient-specific jaw implant. Met Powder Rep 67:12

    Article  Google Scholar 

  80. Gaetani R, Doevendans PA, Metz CH et al (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790

    Article  CAS  Google Scholar 

  81. Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT (2017) Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng 45:360–377

    Article  Google Scholar 

  82. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368:2043

    Article  CAS  Google Scholar 

  83. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27:1607–1614

    Article  CAS  Google Scholar 

  84. Li S, Yan Y, Xiong Z, Weng C, Zhang R, Wang X (2009) Gradient hydrogel construct based on an improved cell assembling system. J Bioact Compat Polym 24:84–99

    Article  CAS  Google Scholar 

  85. Li S, Xiong Z, Wang X, Yan Y, Liu H, Zhang R (2009) Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym 24:249–265

    Article  Google Scholar 

  86. Zhao X, Wang X (2013) Preparation of an adipose-derived stem cell (ADSC)/fibrin-PLGA construct based on a rapid prototyping technique. J Bioact Compat Polym 28:191–203

    Article  Google Scholar 

  87. Zhao X, Liu L, Wang J, Xu YF, Zhang WM, Khang G, Wang X (2014) In vitro vascularization of a combined system based on a 3D bioprinting technique. J Tissue Eng Regen Med 10:833–842

    Article  Google Scholar 

  88. He K, Wang X (2011) Rapid prototyping of tubular polyurethane and cell/hydrogel construct. J Bioact Compat Polym 26:363–374

    Article  CAS  Google Scholar 

  89. Zhou X, Wang X (2015) Breast Engineering. In: Wang X (ed) Organ manufacturing. Nova Science Publishers Inc, Hauppauge, pp 357–384

    Google Scholar 

  90. Wang X (2013) Overview on biocompatibilities of implantable biomaterials. In: Lazinica R (ed) Advances in biomaterials science and biomedical applications in biomedicine. In Tech, Rijeka, pp 111–155

    Google Scholar 

  91. Wang X (2014) Spatial effects of stem cell engagement in 3D printing constructs. J Stem Cells Res Rev Rep 1:5–9

    Google Scholar 

  92. Wang X, Yan Y, Zhang R (2010) Gelatin-based hydrogels for controlled cell assembly. In: Ottenbrite RM (ed) Biomedical applications of hydrogels handbook. Springer, New York, pp 269–284

    Chapter  Google Scholar 

  93. Huang H, Sharma HS (2013) Neurorestoratology: one of the most promising new disciplines at the forefront of neuroscience and medicine. J Neuro-Oncol 1:37–41

    Google Scholar 

  94. Huang H, Raisman G, Sanberg PR, Sham HS (2015) Neurorestoratology. Nova Science Publishers, New York

    Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the National Natural Science Foundation of China (NSFC) (No. 81571832 & 81271665), the 2017 Discipline Promotion Project of China Medical University (CMU) (No. 3110117049), and the International Cooperation and Exchanges NSFC and Japanese Society for the Promotion of Science (JSPS) (No. 81411140040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Liu, C. (2018). 3D Bioprinting of Adipose-Derived Stem Cells for Organ Manufacturing. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_1

Download citation

Publish with us

Policies and ethics